Bibliography
“Spatial Heterogeneity: Past, Present, And Future”. In Ecosystem Function In Heterogeneous Landscapes, 443-449. Ecosystem Function In Heterogeneous Landscapes. New York, NY: Springer, 2005. doi:10.1007/0-387-24091-8_22.
. “Spatial Habitat Use Post-Breeding: A Radio-Telemetry Study In Gambel’s White-Crowned Sparrows”. Society For Integrative And Comparative Biology, Annual Meeting. Society For Integrative And Comparative Biology, Annual Meeting. Sacramento, CA, January 2015, 2015.
. “Spatial And Temporal Variability In Dominant Heat Fluxes In Arctic Rivers”. American Geophysical Union Fall Meeting. American Geophysical Union Fall Meeting. San Francisco, 2014.
. “Space Use And Habitat Affinities Of The Singing Vole On The Northern Foothills Of The Brooks Range, Alaska.”. Department Of Natural Resources. Department Of Natural Resources. University of New Hampshire, 2015. https://scholars.unh.edu/thesis/1065/.
. “Sources And Partitioning Of Organic Matter In A Pelagic Microbial Food Web Inferred From The Isotopic Composition (Del 13C And Del 15N) Of Zooplankton Species”. Archiv Fur Hydrobiologie Beiheft 48. Archiv Fur Hydrobiologie Beiheft (1996): 53-61. http://www.schweizerbart.de//publications/detail/isbn/9783510470495/Archiv\_Advances\_i\_Limnol\_Heft\_48.
. “Some Physical And Chemical Characteristics Of An Arctic Beaded Stream”. Ecology Of An Arctic Watershed: Landscape Processes And Linkages. Ecology Of An Arctic Watershed: Landscape Processes And Linkages. University of Ohio in Columbus, 1987.
. “Solar‐Induced Chlorophyll Fluorescence Exhibits A Universal Relationship With Gross Primary Productivity Across A Wide Variety Of Biomes”. Global Change Biology 25. Global Change Biology (2019). doi:10.1111/gcb.14565.
. “Solar-Induced Chlorophyll Fluorescence Is Strongly Correlated With Terrestrial Photosynthesis For A Wide Variety Of Biomes: First Global Analysis Based On Oco-2 And Flux Tower Observations”. Global Change Biology 24, no. 93. Global Change Biology (2018): 3990 - 4008. doi:10.1111/gcb.14297.
. “Solar-Induced Chlorophyll Fluorescence Exhibits A Universal Relationship With Gross Primary Productivity Across A Wide Variety Of Biomes”. Global Change Biology 25, no. 4. Global Change Biology (2019): e4 - e6. doi:10.1111/gcb.14565.
. “Solar Uv Radiation In A Changing World: Roles Of Cryosphere–Land–Water–Atmosphere Interfaces In Global Biogeochemical Cycles”. Photochemical & Photobiological Sciences 18. Photochemical & Photobiological Sciences (2019): 747–774. doi:10.1039/c8pp90063a.
. “Solar Position Confounds The Relationship Between Ecosystem Function And Vegetation Indices Derived From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 298-299. Agricultural And Forest Meteorology (2021): 108291. doi:10.1016/j.agrformet.2020.108291.
. “Soil Rhizosphere Food Webs, Their Stability, And Implications For Soil Processes And Ecosystems”. In The Rhizosphere: An Ecological Perspective, 101-126. The Rhizosphere: An Ecological Perspective. San Diego, CA: Elsevier Academic Press, 2007.
. “Soil Organic Matter And Aggregate Dynamics In An Arctic Ecosystem”. Ecology Department. Ecology Department. Colorado State University, 2010.
. “Soil Nutrient Availability Affects Tundra Plant Community Composition And Plant–Vole Interactions”. Arctic, Antarctic, And Alpine Research 56. Arctic, Antarctic, And Alpine Research (2024): 2356276. doi:10.1080/15230430.2024.2356276.
. “The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”, 2022. doi:10.7302/5919.
. “Soil Carbon Availability Decouples Net Nitrogen Mineralization And Net Nitrification Across United States Long Term Ecological Research Sites”. Biogeochemistry 162, no. 1. Biogeochemistry (2023): 13 - 24. doi:10.1007/s10533-022-01011-w.
. “Soil Bacterial Community Composition Altered By Increased Nutrient Availability In Arctic Tundra Soils”. Frontiers In Microbiology 5. Frontiers In Microbiology (2014): 516. doi:10.3389/fmicb.2014.00516.
. “Snail Populations In Arctic Lakes: Competition Mediated By Predation”. Oecologia 82, no. 1. Oecologia (1990): 26-32. doi:10.1007/Bf00318529.
. “Small Herbivores With Big Impacts: Tundra Voles (Microtus Oeconomus) Alter Post-Fire Ecosystem Dynamics”. Ecology 103. Ecology (2022): e3689. doi:10.1002/ecy.3689.
. “Small Herbivores With Big Impacts: Tundra Voles ( Microtus Oeconomus ) Alter Post‐Fire Ecosystem Dynamics”. Ecology 103, no. 7. Ecology (2022). doi:10.1002/ecy.3689.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Small But Mighty: Impacts Of Rodent-Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36. Functional Ecology (2022): 2331–2343. doi:10.1111/1365-2435.14127.
. “Size Structure Of A Lake Trout ( \Textit{Salvelinus Namaycush ) Population An Arctic Lake: Influence Of Angling And Implications For Fish Community Structure”. Canadian Journal Of Fisheries And Aquatic Sciences 46. Canadian Journal Of Fisheries And Aquatic Sciences (1989): 2153–2156. doi:10.1139/f89-266.
. “Size Structure Of A Lake Trout (Salvelinus Namaycush) Population In An Arctic Lake: Influence Of Angling And Implications For Fish Community Structure”. Canadian Journal Of Fisheries And Aquatic Sciences 46. Canadian Journal Of Fisheries And Aquatic Sciences (1989): 2153-2156. doi:10.1139/f89-266.
. “Simulation Model Of The Planktivorous Feeding Of Arctic Grayling: Laboratory And Field Verification”. Hydrobiologia 240. Hydrobiologia (1992): 235-246. doi:10.1007/BF00013465.
.