Bibliography
Export 743 results:
Filters: Type is Journal Article [Clear All Filters]
“Global Assessment Of Experimental Climate Warming On Tundra Vegetation: Heterogeneity Over Space And Time”. Ecology Letters 15, no. 2. Ecology Letters (2012): 164-175. doi:10.1111/j.1461-0248.2011.01716.x.
. “The Evolution Of Ecosystem Processes: Growth Rate And Elemental Stoichiometry Of A Key Herbivore In Temperate And Arctic Habitats”. Journal Of Evolutionary Biology 13, no. 5. Journal Of Evolutionary Biology (2000): 845-853. doi:10.1046/j.1420-9101.2000.00215.x.
. “Forest Canopy Hydraulic Properties And Catchment Water Balance: Observations And Modeling”. Ecological Modelling 154. Ecological Modelling (2002): 263-288. doi:10.1016/S0304-3800(02)00068-6.
. “Predicted Responses Of Arctic And Alpine Ecosystems To Altered Seasonality Under Climate Change”. Global Change Biology 20. Global Change Biology (2014): 3256-3269. doi:10.1111/gcb.12568.
. “Long-Term Reliability Of The Figaro Tgs 2600 Solid-State Methane Sensor Under Low-Arctic Conditions At Toolik Lake, Alaska”. Atmospheric Measurement Techniques 13, no. 5. Atmospheric Measurement Techniques (2020): 2681 - 2695. doi:10.5194/amt-13-2681-2020.
. “Interannual, Summer, And Diel Variability Of Ch4 And Co2 Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environ. Sci.: Processes Impacts 22. Environ. Sci.: Processes Impacts (2020): 2181-2198. doi:10.1039/D0EM00125B.
. “Co2 Exchange Between Air And Water In An Arctic Alaskan And Mid-Latitude Swiss Lake: The Importance Of Convective Mixing”. Journal Of Geophysical Research: Atmospheres 108, no. D12. Journal Of Geophysical Research: Atmospheres (2003): 4362. doi:10.1029/2002JD002653.
. “Effects Of Long-Term Climate Trends On The Methane And Co2 Exchange Processes Of Toolik Lake, Alaska”. Frontiers In Environmental Science 10. Frontiers In Environmental Science (2022). doi:10.3389/fenvs.2022.948529.
. “Performance Of A Low-Cost Methane Sensor For Ambient Concentration Measurements In Preliminary Studies”. Atmospheric Measurement Techniques Discussions 5, no. 8. Atmospheric Measurement Techniques Discussions (2012): 2567-2590. doi:10.5194/amt-5-1925-2012.
. “Long-Term Release Of Carbon Dioxide From Arctic Tundra Ecosystems In Alaska”. Ecosystems 20, no. 5. Ecosystems (2017): 960 - 974. doi:10.1007/s10021-016-0085-9.
. “Seasonal Patterns Of Carbon Dioxide And Water Fluxes In Three Representative Tundra Ecosystems In Northern Alaska”. Ecosphere 3, no. 1. Ecosphere (2012): art 4. doi:10.1890/es11-00202.1.
. “Changes In The Structure And Function Of Northern Alaska Ecosystems When Considering Variable Leaf-Out Times Across Groupings Of Species In A Dynamic Vegetation Model”. Global Change Biology 20, no. 3. Global Change Biology (2014): 963-978. doi:10.1111/gcb.12392.
. “Internal Wave Effects On Photosynthesis: Experiments, Theory And Modeling”. Limnology And Oceanography 53. Limnology And Oceanography (2008): 339-353. doi:10.4319/lo.2008.53.1.0339.
. “A Re-Evaluation Of The Search Cycle Of Planktivorous Arctic Grayling, Thymallus Arcticus”. Canadian Journal Of Fisheries And Aquatic Sciences 45. Canadian Journal Of Fisheries And Aquatic Sciences (1987): 187-192. doi:10.1139/f88-021.
. “Physical Determinants Of Microbial Colonization And Decomposition Of Plant Litter In An Arctic Lake”. Microbial Ecology 8, no. 2. Microbial Ecology (1982): 127-138. doi:10.1007/BF02010446.
. “Effects Of Nutrient Enrichment On The Colonization And Decomposition Of Plant Detritus By The Microbiota Of An Arctic Lake”. Canadian Journal Of Microbiology 28, no. 11. Canadian Journal Of Microbiology (1982): 1199-1205. doi:10.1139/m82-178.
. “Evidence Of Microbial Succession On Decaying Leaf Litter In An Arctic Lake”. Canadian Journal Of Microbiology 28, no. 6. Canadian Journal Of Microbiology (1982): 686-695. doi:10.1139/m82-103.
. “Microbial Colonization And Decomposition Of (Carex) Litter In An Arctic Lake”. Applied And Environmental Microbiology 39. Applied And Environmental Microbiology (1980): 888-893. https://aem.asm.org/content/39/4/888.
. “Lignocellulose Mineralization By Arctic Lake Sediments In Response To Nutrient Manipulation”. Applied And Environmental Microbiology 40, no. 1. Applied And Environmental Microbiology (1980): 32-39. http://aem.asm.org/content/40/1/32.full.pdf.
. “Long-Term Warming In Alaska Enlarges The Diazotrophic Community In Deep Soils”. Mbio 10. Mbio (2019): e02521–18. doi:10.1128/mBio.02521-18.
. “Growth And Tillering Patterns Within Tussocks Of Eriophorum Vaginatum”. Holarctic Ecology 5, no. 2. Holarctic Ecology (1982): 180-186. doi:10.1111/j.1600-0587.1982.tb01034.x.
. “Effects Of Removal Of Neighboring Species On Growth, Nutrients, And Microclimate Of Eriophorum Vaginatum”. Arctic And Alpine Research 17, no. 1. Arctic And Alpine Research (1985): 7-17. doi:10.2307/1550958.
. “Interspecific And Intraspecific Variation In Leaf Toughness Of Arctic Plants In Relation To Habitat And Nutrient Supply”. Arctic Science. Arctic Science (2021): 1–15. doi:10.1139/as-2020-0016.
. “Environmental Sensitivity Of Ecotypes As A Potential Influence On Primary Productivity”. American Naturalist 136, no. 1. American Naturalist (1990): 126-131. doi:10.1086/285085.
. “Life Histories Of Tillers Of Eriophorum Vaginatum In Relation To Tundra Disturbance”. Journal Of Ecology 71, no. 1. Journal Of Ecology (1983): 131-147. doi:10.2307/2259967.
.