Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Long-Term Ecological Research In A Human-Dominated World”. Bioscience 62, no. 4. Bioscience (2012): 342-353. doi:10.1525/bio.2012.62.4.6.
. “Optimal Growth Temperature Of Arctic Soil Bacterial Communities Increases Under Experimental Warming”. Global Change Biology 28. Global Change Biology (2022): 6050–6064. doi:10.1111/gcb.16342.
. “Maximum Summer Temperatures Predict The Temperature Adaptation Of Arctic Soil Bacterial Communities”. Biogeosciences Discussions. Biogeosciences Discussions (2022): 1–26. doi:10.5194/bg-2022-184.
. “Re-Evaluation Of The Taxonomy Of Daphnia Longiremis Sars, 1862 (Cladocera): Description Of A New Morph From Alaska”. Crustaceana 38, no. 1. Crustaceana (1980): 1-11. doi:10.1163/156854080X00364.
. “Phylogenetic Diversity In Freshwater‐Dwelling Isochrysidales Haptophytes With Implications For Alkenone Production”. Geobiology. Geobiology (2019). doi:10.1111/gbi.12330.
. “Arctic Arthropod Assemblages In Habitats Of Differing Shrub Dominance”. Ecography 36, no. 9. Ecography (2013): 994-1003. doi:10.1111/j.1600-0587.2012.00078.x.
. “Cumulative Geoecological Effects Of 62 Years Of Infrastructure And Climate Change In Ice-Rich Permafrost Landscapes, Prudhoe Bay Oilfield, Alaska”. Global Change Biology 20. Global Change Biology (2014): 1211–1224. doi:10.1111/gcb.12500.
. “Flux And Age Of Dissolved Organic Carbon Exported To The Arctic Ocean: A Carbon Isotopic Study Of The Five Largest Arctic Rivers”. Global Biogeochemical Cycles 21, no. 4. Global Biogeochemical Cycles (2007): GB4011. doi:10.1029/2007GB002934.
. “Model Responses To Co2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32. Ecological Applications (2022). doi:10.1002/eap.2478.
. “The Role Of Down-Slope Water And Nutrient Fluxes In The Response Of Arctic Hill Slopes To Climate Change”. Biogeochemistry 69, no. 1. Biogeochemistry (2004): 37-62. doi:10.1023/B:BIOG.0000031035.52498.21.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems. Ecosystems (2020). doi:10.1007/s10021-020-00542-3.
. “Modeling For Understanding V. Modeling For Numbers”. Ecosystems 20. Ecosystems (2017): 215 - 221. doi:10.1007/s10021-016-0067-y.
. “Modeling Coupled Biogeochemical Cycles”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 68-73. doi:10.1890/090223.
. “A Model Of Multiple-Element Limitation For Acclimating Vegetation”. Ecology 73, no. 4. Ecology (1992): 1157-1174. doi:10.2307/1940666.
. “Ecosystem Feedbacks Constrain The Effect Of Day-To-Day Weather Variability On Land–Atmosphere Carbon Exchange”. Global Change Biology 29. Global Change Biology (2023): 6093–6105. doi:10.1111/gcb.16926.
. “Aggregating Fine-Scale Ecological Knowledge To Model Coarser-Scale Attributes Of Ecosystems”. Ecological Applications 2, no. 1. Ecological Applications (1992): 55-70. doi:10.2307/1941889.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems 24. Ecosystems (2021): 667–685. doi:10.1007/s10021-020-00542-3.
. “Validating Models Of Ecosystem Response To Global Change”. Bioscience 46, no. 3. Bioscience (1996): 190-198. doi:10.2307/1312740.
. “A General Biogeochemical Model Describing The Responses Of The C And N Cycles In Terrestrial Ecosystems To Changes In Co2, Climate, And N Deposition”. Tree Physiology 9, no. 1-2. Tree Physiology (1991): 101-126. doi:10.1093/treephys/9.1-2.101.
. “A Revised Assessment Of Species Redundancy And Ecosystem Reliability”. Conservation Biology 13, no. 2. Conservation Biology (1999): 440-443. doi:10.1046/j.1523-1739.1999.013002440.x.
. “Ecosystem’s 80Th And The Reemergence Of Emergence”. Ecosystems 18, no. 5. Ecosystems (2015): 735 - 739. doi:10.1007/s10021-015-9893-6.
. “Terrestrial C Sequestration At Elevated-Co2 And Temperature: The Role Of Dissolved Organic N Loss”. Ecological Applications 15, no. 1. Ecological Applications (2005): 71-86. doi:10.1890/03-5303.
. “N And P Constrain C In Ecosystems Under Climate Change: Role Of Nutrient Redistribution, Accumulation, And Stoichiometry”. Ecological Applications 32, no. 8. Ecological Applications (2022). doi:10.1002/eap.2684.
. “Responses Of N-Limited Ecosystems To Increased Co2: A Balanced-Nutrition, Coupled-Element-Cycles Model”. Ecological Applications 7, no. 2. Ecological Applications (1997): 444-460. doi:10.2307/2269511.
. “Time Lags: Insights From The U.s. Long Term Ecological Research Network”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3431.
.