Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Disturbance And Productivity As Codeterminants Of Stream Food Web Complexity In The Arctic”. Limnology And Oceanography 58. Limnology And Oceanography (2013): 2158-2170. doi:10.4319/lo.2013.58.6.2158.
. “Disturbance Legacies And Climate Jointly Drive Tree Growth And Mortality In An Intensively Studied Boreal Forest”. Global Change Biology 20. Global Change Biology (2014): 216-227. doi:10.1111/gcb.12404.
. “Disturbance, Nutrients, And Antecedent Flow Conditions Affect Macroinvertebrate Community Structure And Productivity In An Arctic River”. Limnology And Oceanography 64, no. S1. Limnology And Oceanography (2019): S93-S104. doi:10.1002/lno.10942.
. “Disturbances As Hot Spots Of Ecotypic Variation: A Case Study With Dryas Octopetala”. Arctic, Antarctic And Alpine Research 46. Arctic, Antarctic And Alpine Research (2014): 542-547. doi:10.1657/1938-4246-46.3.542.
. “Disturbances As Hot Spots Of Ecotypic Variation: A Case Study With \Textit{Dryas Octopetala”. Arctic, Antarctic, And Alpine Research 46. Arctic, Antarctic, And Alpine Research (2014): 542–547. doi:10.1657/1938-4246-46.3.542.
. “Diversity And Potential Sources Of Microbiota Associated With Snow On Western Portions Of The Greenland Ice Sheet”. Environmental Microbiology PrePrint. Environmental Microbiology (2014). doi:10.1111/1462-2920.12446.
. “Do Individual Plant Species Show Predictable Responses To Nitrogen Addition Across Multiple Experiments?”. Oikos 110. Oikos (2005): 547-555. doi:10.1111/j.0030-1299.2005.13792.x.
. “Does Ndvi Reflect Variation In The Structural Attributes Associated With Increasing Shrub Dominance In Arctic Tundra?”. Environmental Research Letters 6, no. 3. Environmental Research Letters (2011): 035501. doi:10.1088/1748-9326/6/3/035501.
. “Does Plant Community Plasticity Mediate Microbial Homeostasis?”. Ecology And Evolution 10, no. 12. Ecology And Evolution (2020): 5251 - 5258. doi:10.1002/ece3.v10.1210.1002/ece3.6269.
. “Drivers Of Nitrogen Transfer In Stream Food Webs Across Continents”. Ecology 98, no. 12. Ecology (2017): 3044 - 3055. doi:10.1002/ecy.2009.
. “Drought Legacies Influence The Long-Term Carbon Balance Of A Freshwater Marsh”. Journal Of Geophysical Research: Biogeosciences 115, no. G3. Journal Of Geophysical Research: Biogeosciences (2010): 9 pp. doi:10.1029/2009JG001215.
. “Dry Heath Arctic Tundra Responses To Long-Term Nutrient And Light Manipulation”. Arctic, Antarctic And Alpine Research 34, no. 2. Arctic, Antarctic And Alpine Research (2002): 211-218. doi:10.2307/1552473.
. “Eavesdropping On The Arctic: Automated Bioacoustics Reveal Dynamics In Songbird Breeding Phenology”. Science Advances 4, no. 6. Science Advances (2018). doi:10.1126/sciadv.aaq1084.
. “Ecological Dynamics Across The Arctic Associated With Recent Climate Change”. Science 325, no. 5946. Science (2009): 1355-1358. doi:10.1126/science.1173113.
. “Ecological Scaling Laws Link Individual Body Size Variation To Population Abundance Fluctuation”. Oikos 125. Oikos (2016): 288–299. doi:10.1111/oik.03100.
. “Ecological Variability In Space And Time: Insights Gained From The Us Lter Program”. Bioscience 53, no. 1. Bioscience (2003): 57-67. doi:10.1641/0006-3568(2003)053%5B0057:EVISAT%5D2.0.CO;2.
. “Ecosystem Carbon Storage In Arctic Tundra Reduced By Long-Term Nutrient Fertilization”. Nature 431. Nature (2004): 440-443. doi:10.1038/nature02887.
. “Ecosystem Feedbacks And Cascade Processes: Understanding Their Role In The Responses Of Arctic And Alpine Ecosystems To Environmental Change”. Global Change Biology 15, no. 5. Global Change Biology (2009): 1153-1172. doi:10.1111/j.1365-2486.2008.01801.x.
. “Ecosystem Feedbacks Constrain The Effect Of Day-To-Day Weather Variability On Land–Atmosphere Carbon Exchange”. Global Change Biology 29. Global Change Biology (2023): 6093–6105. doi:10.1111/gcb.16926.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems 24. Ecosystems (2021): 667–685. doi:10.1007/s10021-020-00542-3.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems. Ecosystems (2020). doi:10.1007/s10021-020-00542-3.
. “Ecosystem Responses To Climate Change At A Low Arctic And A High Arctic Long-Term Research Site”. Ambio 46, no. S1. Ambio (2017): 160 - 173. doi:10.1007/s13280-016-0870-x.
. “Ecosystem’s 80Th And The Reemergence Of Emergence”. Ecosystems 18, no. 5. Ecosystems (2015): 735 - 739. doi:10.1007/s10021-015-9893-6.
. “Ecotypic Differences In The Phenology Of The Tundra Species Eriophorum Vaginatum Reflect Sites Of Origin”. Ecology And Evolution 7, no. 22. Ecology And Evolution (2017): 9775 - 9786. doi:10.1002/ece3.3445.
. “Ecotypic Differences In The Phenology Of The Tundra Species \Textit{Eriophorum Vaginatum Reflect Sites Of Origin”. Ecology And Evolution 7. Ecology And Evolution (2017): 9775–9786. doi:10.1002/ece3.3445.
.