Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Ecosystem Feedbacks Constrain The Effect Of Day-To-Day Weather Variability On Land–Atmosphere Carbon Exchange”. Global Change Biology 29. Global Change Biology (2023): 6093–6105. doi:10.1111/gcb.16926.
. “Processing Arctic Eddy-Flux Data Using A Simple Carbon-Exchange Model Embedded In The Ensemble Kalman Filter”. Ecological Applications 20, no. 5. Ecological Applications (2010): 1285-1301. doi:10.1890/09-0876.1.
. “The Role Of Down-Slope Water And Nutrient Fluxes In The Response Of Arctic Hill Slopes To Climate Change”. Biogeochemistry 69, no. 1. Biogeochemistry (2004): 37-62. doi:10.1023/B:BIOG.0000031035.52498.21.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems 24. Ecosystems (2021): 667–685. doi:10.1007/s10021-020-00542-3.
. “Modeling Coupled Biogeochemical Cycles”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 68-73. doi:10.1890/090223.
. “Consistent Effects Of Nitrogen Amendments On Soil Microbial Communities And Processes Across Biomes”. Global Change Biology 18, no. 6. Global Change Biology (2012): 1918-1927. doi:10.1111/j.1365-2486.2012.02639.x.
. “A Case Study Of Long-Term Engagement And Identity-In-Practice: Insights Into The Stem Pathways Of Four Underrepresented Youths”. Journal Of Research In Science Teaching. Journal Of Research In Science Teaching (2015): n/a - n/a. doi:10.1002/tea.21268.
. “Orchidee-Peat (Revision 4596), A Model For Northern Peatland Co≪Sub≫2≪/Sub≫, Water, And Energy Fluxes On Daily To Annual Scales”. Geoscientific Model Development 11. Geoscientific Model Development (2018): 497–519. doi:10.5194/gmd-11-497-2018.
. “Orchidee-Peat (Revision 4596), A Model For Northern Peatland Co2, Water, And Energy Fluxes On Daily To Annual Scales”. Geoscientific Model Development 11, no. 2. Geoscientific Model Development (2018): 497 - 519. doi:10.5194/gmd-11-497-201.
. “Climate Change Effects On Hydroecology Of Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 347-358. doi:10.1579/0044-7447%282006%2935%5B347%3ACCEOHO%5D2.0.CO%3B2.
. “General Features Of The Arctic Relevant To Climate Change In Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 330-338. doi:10.1579/0044-7447%282006%2935%5B330%3AGFOTAR%5D2.0.CO%3B2.
. “Historical Changes In Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 339-346. doi:10.1579/0044-7447%282006%2935%5B339%3AHCIAFE%5D2.0.CO%3B2.
. “Belowground Community Responses To Fire: Meta-Analysis Reveals Contrasting Responses Of Soil Microorganisms And Mesofauna”. Oikos. Oikos (2018). doi:10.1111/oik.05738.
. “Belowground Community Responses To Fire: Meta-Analysis Reveals Contrasting Responses Of Soil Microorganisms And Mesofauna”. Oikos 128. Oikos (2019): 309–327. doi:10.1111/oik.05738.
. “Corrigendum To “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. ”. Ecology And Evolution 77, no. 11. Ecology And Evolution (2017): 4072 - 4072. doi:10.1002/ece3.3079.
. “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. Ecology And Evolution 7, no. 7. Ecology And Evolution (2017): 2449 - 2460. doi:10.1002/ece3.2863.
. “A Mechanism Of Expansion: Arctic Deciduous Shrubs Capitalize On Warming-Induced Nutrient Availability”. Oecologia 192, no. 3. Oecologia (2020): 671 - 685. doi:10.1007/s00442-019-04586-8.
. “Increasing Leaf Temperature Reduces The Suppression Of Isoprene Emission By Elevated Co2 Concentration”. Science Of The Total Environment 481. Science Of The Total Environment (2014): 352-359. doi:10.1016/j.scitotenv.2014.02.065.
. “Isoprene Emissions From A Tundra Ecosystem”. Biogeosciences 10, no. 2. Biogeosciences (2013): 871 - 889. doi:10.5194/bg-10-871-2013.
. “Ecological Dynamics Across The Arctic Associated With Recent Climate Change”. Science 325, no. 5946. Science (2009): 1355-1358. doi:10.1126/science.1173113.
. “Sporadic P Limitation Constrains Microbial Growth And Facilitates Som Accumulation In The Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil Model”. Soil Biology And Biochemistry 165. Soil Biology And Biochemistry (2022): 108489. doi:10.1016/j.soilbio.2021.108489.
. “Effects Of Thermo-Erosional Disturbance On Surface Soil Carbon And Nitrogen Dynamics In Upland Arctic Tundra”. Environmental Research Letters 9, no. 7. Environmental Research Letters (2014): 075006. doi:10.1088/1748-9326/9/7/075006.
. “Global Data Set Of Long-Term Summertime Vertical Temperature Profiles In 153 Lakes”. Scientific Data 8. Scientific Data (2021): 200. doi:10.1038/s41597-021-00983-y.
. “A Continuous-Flow Periphyton Bioassay: Tests Of Nutrient Limitation In A Tundra Stream”. Limnology And Oceanography 28. Limnology And Oceanography (1983): 583-591. doi:10.4319/lo.1983.28.3.0583.
. “A Tracer Investigation Of Nitrogen Cycling In A Pristine Tundra River”. Canadian Journal Of Fisheries And Aquatic Sciences 54, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (1997): 2361-2367. doi:10.1139/f97-142.
.