plant cover
Abstract | |
---|---|
Adrian V Rocha, 2020 Point-frame measurments from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/c28d78e8a3c11b52b38cf1f1c01dc671 |
This file contains point-frame measurements from a |
Adrian V Rocha, 2021 Point-frame measurement of maximum canopy height for plant growth forms at the 2007 Anaktuvuk River Fire scar measured in 2019.. 10.6073/pasta/7afab2d1a528adc58b4a8f6c7d6216f5 |
This file contains maximum plant heights from point frame measurements made in the southern section of the 2007 Anaktuvuk River fire scar, at a severely burned site and a nearby unburned site. Pin-vegetation contact was recorded using a 0.56 m2 frame with 41 evenly spaced sampling points. Data were collected during peak green in summer 2019. |
Abstract | |
---|---|
William "Breck" Bowden, 2013 Substrate and cover types on the stream bottom determined by point transects for streams near the Toolik Field Station, Alaska, for 2010.. 10.6073/pasta/a3de00f9b8f9d563e8bb2fd37e362bb0 |
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. Point transects were done throughout the sampling season to determine different substrate and cover types on the stream bottom. |
Abstract | |
---|---|
Kevin Griffin, Natalie Boelman, 2020 Vegetation species abundance via point frame from Arctic LTER dry heath tundra, Toolik Field Station, Alaska, 2017. 10.6073/pasta/4b75019636e6f95760fcd49de4c99579 |
Vegetation (species) abundances were measured from LTER heath tundra herbivore exclosures using the point frame method. This file contains the number of pin hits per species for each subplot. |
Abstract | |
---|---|
Laura Gough, 2013 2011 relative percent cover of plant species in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.. 10.6073/pasta/ac0b52cfafad29a666c71299fc6085b7 |
In 2011, relative percent cover of plant species was measured in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006. |
Laura Gough, 2012 2010 relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; and in new experimental plots established in 2006.. 10.6073/pasta/9a838fd30e3fdde2ea9acba37afb2bfa |
In 2010, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra. |
Laura Gough, 2009 Arctic LTER 2007: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic tussock and dry heath tundra.. 10.6073/pasta/fec6fbb53dafa0c6777110fa2fcda507 |
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic tussock and dry heath tundra. |
Laura Gough, 2010 Relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; in new experimental plots established in 2006; and for Sagavanirktok River plots in tussock and heath tundra, Norht Slope Alaska 2008.. 10.6073/pasta/1553e86b8f7ebcc03b757fccc17cc13f |
In 2008, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra. |
Laura Gough, 2007 Arctic 2006: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra.. 10.6073/pasta/7b0a8419c87c05ec1fe4fb708902d428 |
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra. |
Laura Gough, 2007 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra, North Slope Alaska 2004.. 10.6073/pasta/30f0822d9a7d4e2980300052a67e60b1 |
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra. |
Laura Gough, 2001 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.. 10.6073/pasta/d780d20c2fbee479d46c0f99fcf26c9a |
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999. |
Laura Gough, 2007 Arctic LTER 2005: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, moist non-acidic and dry heath tundra.. 10.6073/pasta/c7344c7f8af925285bfb25632c545649 |
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra. |
Laura Gough, 2003 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska 2002. 10.6073/pasta/2185fb606bfb9e55d50e4fe670c6298a |
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra. |
Laura Gough, 2004 Arctic LTER 2001: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/d0eff382d7c0564df5e5524e4a4e65a9 |
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra. |
Laura Gough, 2002 Arctic LTER 2000: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/b9cc1f0f4215535754a4acd8e29bfc0c |
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra. |
Jennie McLaren, 2018 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013. . 10.6073/pasta/8a2999c9ed297a184aaca7057e1ae177 |
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra. |
Laura Gough, 2021 Relative percent cover of plant species in low nutrient LTER moist acidic tundra experimental plots (MAT06) established in 2006 for years 2008, 2010-2020, Arctic LTER Toolik Field Station Alaska. . 10.6073/pasta/3b28ed94fe7916e840ff3313dbe3450c |
Relative percent cover of plant species was measured in low nutrient LTER moist acidic tundra experimental plots (MAT06). Treatments include a gradient of nitrogen and phosphorus additions along with ammonium and nitrate alone. |
Laura Gough, 2019 Relative percent cover of plant species for 2014 in LTER moist acidic tundra experimental plots established in 1981, Arctic LTER Toolik Field Station, Alaska. 10.6073/pasta/f619b425d2997d9f2f831cff207a1819 |
Relative percent cover of plant species was measured in moist acidic tundra experimental plots begun in 1981 in 2014. Treatments include Control and Nitrogen and Phosphorus. |
Laura Gough, 2019 Relative percent cover of plant species for years 2013 2014 2016 2017 in LTER dry heath tundra experimental plots established in 1989, Arctic LTER Toolik, Field Station Alaska. 10.6073/pasta/25d3f0db55e9df6f99fc3e9596433090 |
Relative percent cover of plant species was measured in Arctic Long-Term Ecological Research (ARC-LTER) Dry Heath experimental plots. Treatments include Nitrogen Phosphorus (NP), and Control (CT), Nitrogen Phosphorus Unfenced (NFNP), Nitrogen Phosphorus Small Fenced (SFNP), Nitrogen Phosphorus Large Fenced (LFNP), Control (CT), Control Small Fenced (CTSF), and Control Large Fenced (LFCT). |
Laura Gough, 2019 Relative percent cover of plant species for years 2012-2017 in the Arctic Long-term Ecological Research (ARC-LTER) 1989 moist acidic tundra (MAT89) experimental plots, Toolik Field Station, Alaska. . 10.6073/pasta/f31def760db3f8e6cfee5fee07cc693e |
Relative percent cover of plant species was measured in ARC-LTER 1989 moist acidic tundra experimental plots. Treatments include Control (CT), Nitrogen Phosphorus (NP), Nitrogen (N), Phosphorus (P), and Greenhouse Control (GHCT). In 1996 on unassigned plots, an experiment that manipulate herbivory presence and nutrients was started. Treatments include Control Unfenced (NFCT), Nitrogen Phosphorus Unfenced (NFNP), and Small Fenced Control (CTSF). Not all treatments were measured each year. |
Abstract | |
---|---|
Jennie McLaren, 2021 Relative percent cover and leaf nutrients was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acid tundra, Arctic LTER Toolik Field Station, Alaska 2015. 10.6073/pasta/1c57b6613111c9d05c0225de12fd1098 |
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra in greenhouse and control plots. Leaf percent carbon, percent nitrogen and percent phosphorus were collected from dominant species in greenhouse and control plots on Arctic LTER experimental plots at Toolik field station in moist acidic, non-acidic tundra, wet sedge and shrub tundra |
Abstract | |
---|---|
Torre Jorgenson, 2013 Permafrost soil database with information on site, topography, geomorphology, hydrology, soil stratigraphy, soil carbon, ground ice isotopes, and vegetation at thermokarst features near Toolik and Noatak River, 2009-2013. 10.6073/pasta/6294610ce5738eb9c7e5d1ce13b54017 |
This database contains soil and permafrost stratigraphy associated with thermokarst features near Toolik Lake and the Noatak River collected by Torre Jorgenson and Andrew Balser during summers 2009-2011. The Access Database has main data tables (tbl_) for site (environmental), soil stratigraphy, soil physical data, soil chemical data, soil isotopes (ground ice), soil radiocarbon dates, topography and bathymetry, and vegetation cover. |
Abstract | |
---|---|
Gaius Shaver, 2010 Plant % cover by functional type for the ITEX CO2 flux survey plots at Toolik, Alaska; Abisko, Sweden; Svalbard, Norway; Zackenberg, Northeast Greenland; Anaktuvuk River Burn, Alaska and Barrow, Alaska 2003-2009.. 10.6073/pasta/fa704dc65ddc02afa5132d7287835a5c |
Estimated aerial plant % cover by functional type in flux plots measured during the ITEX cirumarctic flux survey 2004-2006. Survey plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska. Measurements were made during the growing seasons 2003 to 2009. |
Gaius Shaver, 2010 Plant % cover by species for the ITEX CO2 flux survey plots at Toolik, Alaska; Abisko, Sweden; Svalbard, Norway; Zackenberg, Northeast Greenland; and Barrow, Alaska 2004-2009. 10.6073/pasta/ee2d15731f5d84f0983c5847f0d49708 |
Estimated aerial plant % cover by species in flux plots measured during the ITEX circumarctic flux survey 2004-2006. Flux plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska. |
Gaius Shaver, 2012 Raw pin-hit data from 19 1m x 1m point frame plots sampled near the LTER Shrub plots at Toolik Field Station in AK the summer of 2012.. 10.6073/pasta/59cbf45a4bb4a1997bc18f02a1100a64 |
This dataset includes every pin-hit recorded from 19 1m x 1m point frame plots of tall Betula nana and Salix pulchra canopies sampled at the Toolik Field Station, AK the summer of 2012. Twenty-five evenly spaced holes within the plot were sampled for each point frame for which the height and species was recorded for each leaf, stem, or plant that intersected the pin when lowered perpendicular to the ground. Non-woody species were grouped into functional groups (e.g. forb, graminoid, moss) and not identified to species. |
Gaius Shaver, 2013 Maximum canopy height from 14 flux canopy and 19 point frame plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7b7fb8822b918e03c6803b6ba352894b |
Maximum canopy height measurements for deciduous shrub canopies sampled for both 1m x 1mc hamber flux polots (n=14) and point frame plots (n=19) in the summer of 2012 near LTER shrub plots at Toolik Lake, AK. The canopies were dominated either by Salix pulchra or Betula nana species, and plot locations were preferentially selected for tall canopies (height > 75 cm). The methods for the chamber flux and point frames are outlined here briefly, though the data from these measurements are contained in separate files. |
Gaius Shaver, 2012 Summary of three different Leaf Area Index (LAI) methodologies of 19 1m x 1m point frame plots sampled near the LTER Shrub plots at Toolik Field Station in AK the summer of 2012.. 10.6073/pasta/d820beac421a90a6ea65b3b589537f66 |
Summary of three methods used to estimate the Leaf Area Index (LAI) of 19 1m x 1m plots sampled with a point frame near the LTER Shrub plots at the Toolik Field Station in AK the summer of 2012. The methods used were: (1) exponential relationship between LAI and NDVI as measured above the canopy with a Unispec spetroradiometer; (2) Delta-T SunScan canopy analyzer held at 5 cm above the ground under both direct and diffuse light conditions; (3) pin-drop point frame tequnique. Where values have been averaged (such as for the NDVI and SunScan measurements), the standard deviation is given. |
Gaius Shaver, 2012 Leaf Area Index every 15 cm of 1m x 1m chamber flux and point frame plots and sites where dataloggers monitored PAR above, within and below S. pulchra and B. nana canopies during the growing season at the Toolik Field Station in AK, Summer 2012.. 10.6073/pasta/627698983259d6963a6083d5251723cc |
Leaf area index (LAI) measurements were taken with the Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. conditions The data includes all outputs from the SunScan wand: time of measurement, transmitted light, spread of PAR sensors, beam fraction, and zenith angle. |
Gaius Shaver, 2013 Percent species cover from 14 flux canopy and 19 point frame 1m x 1m plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/cd9516d28ef5f7931ab108de3d5f7384 |
Total and individual subsample species percent cover data for all plots where flux or point frame measurements were made in 2012 IVO the LTER Shrub vegetation plots at Toolik Field Station. All plots sampled were dominated either by B. nana or S. pulchra canopies. Cover estimates were made for the five most dominate functional groups using a 1m x 1m grid with 20cm2 blocks with each square representing four percent of the total area. Percentages represent absolute cover so do not sum to 100%. |
Gaius Shaver, 2012 A/Ci curve parameters measured from shoots harvested at three levels in the canopy from 19 1m x 1m plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/1f1df6b91414fd96c0c4e0aa9933f43b |
A/Ci curve parameters and modeled carboxylation, electron transport, and triose-phosphate utilization efficiency rates from shoots clipped from low, mid, and the top of tall, shrub canopies dominated either by Salix pulchra or Betula nana species. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy. These plots were located near the LTER shrub plots at the Toolik Field Staion, AK for point frame measurements, and all measurements took place the summer of 2012. |
Gaius Shaver, 2012 Light response curves measured from shoots harvested at three levels in the canopy from 19 1m x 1m plots dominated by S. pulchra or B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/427415da725d34c28540d03683f04900 |
This dataset contains light response curves and modeled light curve parameters from shoots clipped from low, mid, and the top parts of tall, shrub canopies dominated either by Salix pulchra or Betula nana. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy in plots located near the LTER shrub plots at Toolik Field Station, AK the summer of 2012. The species harvested were chosen based on the species present in each plot, thus the species from each segment of the canopy may not be the same. |
Gaius Shaver, 2013 Percent carbon and nitrogen of leaves from shoots harvested at three levels in the canopy from 19 plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/6e98f40b0cd7e611f62494b68a938244 |
The percent carbon and nitrogen from leaves of shoots harvested from 1m x 1m point frame plots the summer of 2012 at Toolik Lake, Alaska. were measured on a ThermoScientific 2000. For each point frame plot, six shoots were harvested from upper, middle, and low sections of the canopy. The photosynthetic capacity of each shoot was analyzed with a LiCor 6400 infra-red gas analyzer by being run through a light response and A/Ci curve. |
Gaius Shaver, 2013 Total and diffuse photosynthetically active radiation (PAR) recorded by a beam fraction (BF3) sensor during the summer of 2012 in vicinity of Toolik Lake, Alaska.. 10.6073/pasta/e07cdf2782e0016405f9845e02ef5542 |
This file contains irradiance (PAR) and diffuse light data logged from a beam fraction (BF3) sensor near Toolik Lake, Alaska during the summer of 2012. The data comes from a compilation of automated datalogger readings as well as measurements taken during the field season in conjunction with the Delta-T SunScan wand to measure PAR in tall shrub canopies dominated by Betula nana or Salix pulchra species. The sensor was leveled and mounted to a 2m tripod in each location, and programmed to record instantaneous readings in 30 second to 5 minute intervals. |
Gaius Shaver, 2012 Plot descriptions and location data from datalogger, 1m x 1m chamber flux and point frame plots sampled near Toolik Field Station in Alaska the summer of 2012.. 10.6073/pasta/926e2979102d5d34c193582969a97bca |
"2012_GS_PFandCH_GPS" contains GPS locations of all datalogger, 1m x 1m chamber flux and point frame plots sampled IVO Toolik Field Station in Alaska during the summer of 2012. The sorting variables (YEAR, DATE, SITE, GROUP, PLOT, TREAT, PLOT SIZE) are identical to those in other files with data collected that season. The main purpose of this file is for reference and as an aid in interpretation of data analyses and among-site comparisons. |
Gaius Shaver, 2012 Photosynthetically Active Radiation data taken with the Delta-T SunScan wand every 15 cm of 1m x 1m chamber flux and point frame plots as well as four remotely monitored canopies at the Toolik Field Station in AK, Summer 2012.. 10.6073/pasta/d82658b4361c7bad120af2da74885ce4 |
Within-canopy PAR was measured with a Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. The data includes all outputs from the SunScan wand: time of measurement, spread of PAR sensors, total irradiance, total diffuse light, and individual outputs of 64-PAR sensors on the SunScan wand. These measurements were taken for 1m x 1m chamber flux (n=14) and point frame (n=19) plots as well as sites four montitored remotely by PAR sensors located above, within, and below shrub canopies. |
Gaius Shaver, 2012 Harvest data including the shoot leaf area index, position in the canopy, and shoot and plant tissue area, count and mass for each shoot harvested at three levels in the canopy from 19 1m x 1m plots near LTER Shrub plots, Toolik Field Station, AK 2012.. 10.6073/pasta/11f24bddf5278229f37ea5fecf972415 |
Leaf and plant tissue area and mass from shoots harvested from 19 1m x 1m point frame plots near Toolik Field Station, AK during the summer of 2012. Six shoots were harvested from each plot, two from each canopy layer: upper, middle, and low. Each shoot came from a different plant, and the species selected was based on the species dominant in that canopy layer. The leaf area and mass were used to correct A/Ci and light response curves taken on each shoot [data published separately]. |