primary production

Abstract
Gaius Shaver, 2022 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2015, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c733e2d9526616a20711f3856840344a
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen and phosphorous summaries for control and fertilized plots.
Burn Terrestrial Data
Abstract
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the moderately burned site at Anaktuvuk River, Alaska. 10.6073/pasta/6646ac57a7397b9c8d1a2dc3c95a566c
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Summary of below ground root biomass, carbon and nitrogen concentrations from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/9ae19f41326bf63e8d4335d78d4a70d4
A summary of below ground root biomass, carbon and nitrogen concentrations, measured at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Soil properties and nutrient concentrations by depth from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/85a9e76b5d579298bc21b19a25b35c38
Below ground soil bulk density, carbon and nitrogen was measured at various depth increments in mineral and organic soil layers at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. This data corresponds with the aboveground biomass and root biomass data files: 2011ARF_AbvgroundBiomassCN, 2011ARF_RootBiomassCN_byDepth, 2011ARF_RootBiomassCN_byQuad, 2011ARF_RootBiomassCN_byQuad.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the severely burned site of the Anaktuvuk River fire, Alaska. 10.6073/pasta/7f609c982e2e6880f63bab4c3bd5af8d
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Below ground soil carbon and nitrogen concentrations in quadrats harvested from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/ab77e5fe897f697372048e9b9ca2c216
Summarized below ground soil carbon and nitrogen concentrations measured in quadrats at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. This data corresponds with the aboveground biomass and root biomass data files: 2011ARF_AbvgroundBiomassCN, 2011ARF_RootBiomassCN_byDepth, 2011ARF_RootBiomassCN_byQuad, 2011ARF_SoilCN_byDepth.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Below ground root biomass, carbon and nitrogen concentrations by depth increments from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/7a21a62a4144c3c1d9a3750926bfc6a7
Below ground root biomass was measured by depth increments at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. Roots were also analyzed for carbon and nitrogen concentrations.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the unburned control site near the Anaktuvuk River fire scar.. 10.6073/pasta/18fcdcaf43451b70610d55da6475b397
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Model data
Abstract
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (With a Long-term Trend) on Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/83775003d8ef8978bf43d5c801f2a9a9
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Terrestrial Biomass
Abstract
Mathew Williams, Edward Rastetter, 1999 Measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, summer 1997, North Slope, Alaska.. 10.6073/pasta/a5a4d4154e0a8181a5523b4d9c49ed99
1997 measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, North Slope, Alaska.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/5587a6f1bfc4f359c011139b2977d842
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER moist acidic tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER dry heath tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/447aec542efb8fd505b85f90c35ea47e
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER dry heath tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Sarah Hobbie, 2001 Foliar nutrients (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.. 10.6073/pasta/09cc986609a5494d901942b69cea037d
Foliar nutrients (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Sarah Hobbie, 2002 Foliar and litter nutrients and retranslocation efficiencies (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.. 10.6073/pasta/7904f91d28f2782b9ae473b0a6f7203c
Foliar and litter nutrients and retranslocation efficiencies (N, P, K, Ca, Mg) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Laura Gough, Sarah Hobbie, 2004 Above ground plant and belowground stem biomass in moist acidic and non-acidic tussock tundra experimental sites, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4195a17564c031686d5b95b551119fd5
Above ground plant and belowground stem biomass was measured in moist acidic and non-acidic tussock tundra experimental sites. Treatments sampled were control plots and plots amended with nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Percent carbon, percent nitrogen, del13C and del15N of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/bdb3eeabb3b26075f0841440e8f92d3a
Percent carbon, percent nitrogen, del13C and del15N were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2000lgshttbm.dat.
Gaius Shaver, 1996 June and August plant biomass in mesic acidic tussock tundra, 1992, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/e4c9bbe7ff8627cf706780e48aa3462a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass. Two harvests were completed, June and a late July. These are control plots from an experiment setup for a 15N experiment.
Gaius Shaver, 2000 Plant biomass in mesic acidic tussock tundra, 1998 15N controls, Toolik, Alaska.. 10.6073/pasta/e56de6e13a790a5bc90e63e2903dfc6d
Five or six quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass.
Gaius Shaver, Terry Chapin, 1991 Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK, 1982.. 10.6073/pasta/77ca341a7c1f12d8303a99fc8563182f
Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK. .There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61, 1991 pp.1-31.
Gaius Shaver, 2004 Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. 10.6073/pasta/b3407bae411c523f4857753b09f620a0
Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. Treatments at each site included factorial NxP, greenhouse and shade house and were begun in 1985 (Sag site) or in 1988 (Toolik sites).
Gaius Shaver, 1990 Arctic LTER 1982: Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W).. 10.6073/pasta/c0d17c3371e88847208dbc0b35f2f8f5
Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1990 Biomass from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River, Alaswka,1988, Arctic LTER.. 10.6073/pasta/b436a45e56aca0656484a308e4e6f12c
Biomass was harvested from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River in the northern foothills of the Brooks Range , Alaska (68degrees 46' N, 148 degrees 51' W 50m). The vegetation sites are; upland tussock tundra, "hilltop heath", a "hillslope shrub-lupine", a "footslope Equisetum", a wet sedge tundra, and a "riverside willow".
Gaius Shaver, 1995 Early July plant biomass in mesic acidic tussock tundra, 1993, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/d72ed65f521fac34139850ef30bef72a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic acidic tussock tundra. Each quadrat was separated into individual species, new and old aboveground and belowground biomass. The harvest occurred in early July to coincide with a 15N plant and soil harvest.
Gaius Shaver, Laura Gough, 1999 Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra and nonacidic tundra near Arctic LTER Toolik Plots and acidic tundra near Sagwon,Arctic LTER 1997.. 10.6073/pasta/cf45e059c576273ec58ce24769793f28
Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. All vascular species were sorted, divided into new and old growth, dried, and weighed. Lichens were separated by genus in all quadrats. In half of the quadrats (n=4), mosses were separated by species. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen.txt).
Gaius Shaver, 2002 Leaf area for select species was measured in arctic tundra experimental sites from late June into early August,Toolik Field Sattion, Alaska, Arctic LTER 2000.. 10.6073/pasta/13915ef410067ef23bad0faff678319c
Leaf area for select species was measured in arctic tundra experimental sites from late June into early August. Measurements were made in acidic and non acidic tussock tundra and in shrub tundra in control and fertilized plots.
Gaius Shaver, 1989 Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W),1982.. 10.6073/pasta/06fd5df56a2d83c09df1d155479092d5
Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1990 Above ground biomass in acidic tussock tundra experimental site, 1989, Arctic LTER, Toolik, Alaska.. 10.6073/pasta/668dc98c3dbd83a308f0f38fb833f23e
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat.
Gaius Shaver, 1998 Plant biomass in heath tundra experimental plots, 1996, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4dcc09fd3ea2d757794d13c4727542aa
Plant biomass in arctic heath experimental plots. Plots set up in 1989 with nitrogen, phosphorus, nitrogen plus phosphorus and a shade treatment were harvested for above ground biomass. Root mass was also measured on a smaller subsample.
Gaius Shaver, 2001 Plant biomass in moist acidic tussock tundra experimental small mammal exclosures, 1999 Arctic LTER Toolik, Alaska.. 10.6073/pasta/3180bd090124c3a0d7a498e95685dfac
Above ground plant and below ground stem biomass was measured in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Leaf areas were also measured for each quadrat but are in a separate file.
Gaius Shaver, Laura Gough, 1999 A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest, Arctic LTER 1997.. 10.6073/pasta/c9d934f0c88b3f4545f997fe6dfd1a2e
A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest (see 97lg3sbm.txt). Harvests occurred in a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen).
Gaius Shaver, 1990 Seasonal plant biomass moist acidic tussock tundra, 1983, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/f15ef49234144987471d7a10d86d8bc3
Biomass in tussock tundra experimental plots near Toolik Lake, North Slope, AK (68 degrees 38N, 149derees 34W). There were five harvests in 1983. This file is the May 21-22, 1983 harvest.
Gaius Shaver, 1991 Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W), 1982.. 10.6073/pasta/5822d635c5094a1aa9aba29f0692ea49
Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). .There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1996 Plant biomass, leaf area, carbon, nitrogen, and phosphorus in wet sedge tundra, 1994, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/b68ff3f714e72e0528a2d72b2c04aafc
Plant biomass, leaf area, carbon, nitrogen, and phosphorus were measured in three wet sedge tundra experimental sites. Treatments at each site included factorial NxP and at the Toolik sites greenhouse and shade house. Treatments started in 1985 (Sag site) and in 1988 (Toolik sites).
Gaius Shaver, M. Syndonia Bret-Harte, 1998 Weights and lengths from retrospective growth analysis of different stem age classes of Betula nana, 1995, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/25e6539b3b55340d318a1a6befb82764
This data file contains the data on weights and lengths from retrospective growth analysis of different stem age classes of Betula nana ramets from the LTER Nutrient and Warming manipulations in tussock tundra at Toolik Lake.
Gaius Shaver, 2002 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/24261b22fbd2ebb6bd203ceece4b8859
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for control and fertilized plots. Leaf area data is in 2000gsttLA
Gaius Shaver, 2006 Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c3ef07e6ed81c1fc33e9bc20aff07093
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.edu/arc).
Gaius Shaver, Yuriko Yano, 2009 Bulk concentration and isotopic information of plant C and N in green leaves and tissues collected from Imnavait watershed during 2003-2005. 10.6073/pasta/329191b51f7c934d72974eaf0f9bcff9
Changes in total C and N, d13C and d15N, C:N ratio in green leaves and parts of mosses (for sphagnum, both red and green tips were included) over time since 15NH4 addition in Imnavait watershed.
Gaius Shaver, 2005 Above ground plant and below ground stem biomass in the Arctic LTER acidic tussock tundra experimental plots, 2002, Toolik Lake, Alaska.. 10.6073/pasta/b227fa1d98ed466ea5fc3816ef5c8ba2
Above ground plant and below ground stem biomass was measured in the Arctic LTER acidic tussock tundra experimental plots. Treatments included control, nitrogen plus phosphorus amended plots for either 6 or 13 years and vole exclosure plots with or without amends of nitrogen and phosphorus.
Gaius Shaver, 1998 Above ground plant biomass and leaf area of moist acidic tussock tundra 1981 experimental site, Arctic LTER, Toolik Lake, Alaska.1995.. 10.6073/pasta/c8cc8ae964a9f9c68ffbf96cbb61e4e9
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61, 1991 pp.1-31).
Gaius Shaver, 2002 Plant leaf area in Arctic LTER tussock tundra experimental small mammal exclosures.. 10.6073/pasta/ad59eb7b05e4a22138a4d4c27b56f03b
Leaf areas were measured on quadrats harvested in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Biomass was also measured for each quadrat but is in a separate file.
Gaius Shaver, 1990 Above ground plant biomass a moist acidic tussock tundra experimental site, 1984, Acric LTER, Toolik Lake, Alaska.. 10.6073/pasta/08a91cb2697f7cdc82d654e82b53c5c5
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file is the July 26-27, 1984 harvest of the controls and nitrogen + phosphorus treatments.
Laura Gough, Sarah Hobbie, 2004 Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots, Toolik Field Station, Alaska, Arctic LTER 2000.. 10.6073/pasta/6e0b4ea291f4b5940b2b8b80af917bd5
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note:  Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus".  The tissues with 8 quadrats were "Greenhouse"  treatment.
Lakes Chlorophyll and Primary Production
Abstract
Anne Giblin, George Kling, 1995 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.. 10.6073/pasta/26bc0b31099bafcdf964dd47b0d654ec
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 2022 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Alaska, Arctic LTER. Summer 2010 to 2020. 10.6073/pasta/1981b68e5b34e2a87436cdf76e40b417
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2010 to 2020. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 1992 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.. 10.6073/pasta/1b1538449340e68760cf86d92d7082de
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 1992 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.. 10.6073/pasta/c14fe6e5bb0e2a2c6a74d51a6943c667
Decadal file describing the chlorophyll a and primary production in  various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009.  Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production.  The amount of chlorophyll a and pheophytin were also measured.
Terrestrial Plant Phenological and Growth Data
Abstract
Laura Gough, 2008 Growth data was collected on one deciduous shrub species on Arctic LTER experimental plots in moist acidic tussock and dry heath tundra 2004, Toolik Field Station, Alaska.. 10.6073/pasta/433d45e29be3c75342ab66182f235d17
Weekly growth of plant species of three growth forms were measured in the ninth year of a long-term experiment at Toolik Field Station. The experimental treatments excluded small and large mammalian herbivores and increased soil nutrients in two arctic Alaskan tundra communities: moist acidic tussock and dry heath. This data set reports the deciduous dwarf shrub species. Please see 2004lggrgram for the tussock-forming and rhizomatous graminoid species growth data.
Gaius Shaver, 1993 Stems were measured, and aged from Ledum palustre and Salix pulchra on LTER Moist Acidic Tussock Tundra 1981 plots summer 1990, Toolik Lake Filed Station, AK.. 10.6073/pasta/be23ab065016ae190ff2e6ead5f4a9ad
Stems were measured, and aged from Ledum palustre and Salix pulchra species on treated plots at Toolik Lake, AK. Stem secondary growth in per cent per year was estimated from the slope of weight per unit length vs. age.
Gaius Shaver, 1987 Seasonal patterns of leaf exsertion, elongation and senescence for Eriophorum vaginatum and Carex bigelowii was measured in mesic tussock tundra sites 1985 to 1986, near Toolik Lake, AK.. 10.6073/pasta/9340f235aed5e4db991070d02b8f5c2a
Seasonal patterns of leaf exsertion, elongation and senescence for Eriophorum vaginatum and Carex bigelowii was measured in mesic tussock tundra sites near Toolik Lake, AK. In addition, the response of both species to NP fertilizer and to variation in site fertility (after track versus non-track areas) were also assayed and compared. The research was done over two full growing seasons.
AON Reflectance
Abstract
Gaius Shaver, 2012 Reflectance spectra of vegetation near Imnavait Creek, AK from the 2008-2010 growing seasons.. 10.6073/pasta/d5648e8f6376c35fd86f4bd2bd76e4ba
A spectrophotometer was used to scan the canopy vegetation at four sites near Imnavait Creek each year from 2008 - 2010 by Toolik Lake LTER, Alaska. Reflectance spectra from 310-1130 nm are presented here with information relating the date and site of the scan.
Gaius Shaver, 2012 Vegetation indices calculated from canopy reflectance spectra at four sites along Imnavait Creek, AK during the 2008-2010 growing seasons.. 10.6073/pasta/bfa61daf6eeb155376a029cef3f79d84
A spectrophotometer was used to scan the canopy vegetation at four sites along Imnavait Creek in the Kuparuk Watershed near Toolik Lake LTER, Alaska. The resulting reflectance spectra were used to calculate average vegetation indices for each site and collection day.
Modeling Data
Abstract
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Steady state carbon, nitrogen, phosphorus, and water budgets for twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/b737b5f0855aa7afeda68764e77aec2a
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Ecosystem responses to changes in climate and carbon dioxide in twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/7ca56dfbe6c9bedf5126e9ff7e66f28d
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (No Long-term Weather Trend) Control Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/a946904960bb11f44915b80fb4fc5981
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Terrestrial Reflectance
Abstract
Gaius Shaver, Laura Gough, 2022 Vegetation indices calculated from reflectance spectra collected at LTER plots at Toolik Lake, Alaska during the 2007-2019 growing seasons.. 10.6073/pasta/c7f5923cc5b929ccdf0d61f461147b3d
Vegetation indices calculated from reflectance spectra collected at Arctic LTER experimental plots at Toolik Lake, Alaska during the 2007-2019 growing seasons.
Terrestrial
Abstract
Laura Gough, Sarah Hobbie, 2005 Percent carbon and percent nitrogen of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/75de62f9de5e22e63a76c8b48b99cf2b
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Terrestrial Trace Gases
Abstract
Gaius Shaver, 2010 Leaf area, biomass, carbon and nitrogen content by species for harvests taken as part of the ITEX flux survey.. 10.6073/pasta/74407ca602bf8944e5152f7a74203ac4
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland, and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Gaius Shaver, 2010 Best fit parameters describing net CO2 flux light response curves measured during the ITEX CO2 flux survey 2003-2009.. 10.6073/pasta/c7a1ddd4b19dcbfa7c46175b89881750
Ecosystem CO2 flux light response curves were measured on 1m x 1m plots ( some 0.3m x 0.3m plots in 2006 and some 0.7m x0.7m plots in 2009) across the arctic. This file contains the best fit parameters that describe these light response curves, together with corresponding NDVI data for each curve.
Gaius Shaver, 2010 NDVI, leaf area index and total foliar N of harvests taken during the ITEX flux survey. 10.6073/pasta/95095cb096b2e977e6bb8658b021c76e
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Gaius Shaver, 2013 Maximum canopy height from 14 flux canopy and 19 point frame plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7b7fb8822b918e03c6803b6ba352894b
Maximum canopy height measurements for deciduous shrub canopies sampled for both 1m x 1mc hamber flux polots (n=14) and point frame plots (n=19) in the summer of 2012 near LTER shrub plots at Toolik Lake, AK. The canopies were dominated either by Salix pulchra or Betula nana species, and plot locations were preferentially selected for tall canopies (height > 75 cm). The methods for the chamber flux and point frames are outlined here briefly, though the data from these measurements are contained in separate files.
Gaius Shaver, 2013 Individual chamber flux measurements from 14 flux whole-canopy shrub plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/4b5f0a6ac4cd14e233d7e7173fd40464
“Flux data” contains the CO2 and water flux data along with the corresponding diffuse light fraction at the time of measurement from the ITEX shrub canopy project taken at Toolik Lake, Alaska in 2012. Each record is a single LiCor flux measurement made with LiCor 6400 photosynthesis system, with associated average pressure, temperature, PAR, water vapor, and other data such as NDVI and LAI measurements taken with a DeltaT SunScan wand under both direct and diffuse light conditions.
Gaius Shaver, 2012 Summary of three different Leaf Area Index (LAI) methodologies of 19 1m x 1m point frame plots sampled near the LTER Shrub plots at Toolik Field Station in AK the summer of 2012.. 10.6073/pasta/d820beac421a90a6ea65b3b589537f66
Summary of three methods used to estimate the Leaf Area Index (LAI) of 19 1m x 1m plots sampled with a point frame near the LTER Shrub plots at the Toolik Field Station in AK the summer of 2012. The methods used were: (1) exponential relationship between LAI and NDVI as measured above the canopy with a Unispec spetroradiometer; (2) Delta-T SunScan canopy analyzer held at 5 cm above the ground under both direct and diffuse light conditions; (3) pin-drop point frame tequnique. Where values have been averaged (such as for the NDVI and SunScan measurements), the standard deviation is given.
Gaius Shaver, 2012 Leaf Area Index every 15 cm of 1m x 1m chamber flux and point frame plots and sites where dataloggers monitored PAR above, within and below S. pulchra and B. nana canopies during the growing season at the Toolik Field Station in AK, Summer 2012.. 10.6073/pasta/627698983259d6963a6083d5251723cc
Leaf area index (LAI) measurements were taken with the Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. conditions The data includes all outputs from the SunScan wand: time of measurement, transmitted light, spread of PAR sensors, beam fraction, and zenith angle.
Gaius Shaver, 2013 Summary of soil temperature, moisture, and thaw depth for 14 chamber flux measurements sampled near LTER shrub sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7ccf390e6fe4824e93b7a2b844605a40
Soil temperature at 5cm and 10cm depth [°C], volumetric water content (VWC) [%] and depth of thaw [cm] for 14 shrub canopy flux plots measured in vicinity of the Toolik Field Station, AK in 2012.
Gaius Shaver, 2012 Light response curves measured from shoots harvested at three levels in the canopy from 19 1m x 1m plots dominated by S. pulchra or B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/427415da725d34c28540d03683f04900
This dataset contains light response curves and modeled light curve parameters from shoots clipped from low, mid, and the top parts of tall, shrub canopies dominated either by Salix pulchra or Betula nana. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy in plots located near the LTER shrub plots at Toolik Field Station, AK the summer of 2012. The species harvested were chosen based on the species present in each plot, thus the species from each segment of the canopy may not be the same.
Gaius Shaver, 2012 Daily summaries of photosynthetically active radiation (PAR), relative humidity, and temperature data logged above, within, and below Betula nana and Salix pulchra shrub canopies during the summer of 2012 in vicinity of Toolik Lake, Alaska.. 10.6073/pasta/101237eb155ec6efe1be26807c1025ec
This file contains limited daily summaries of PAR, relative humidity, and temperature data monitored above, within, and below Betula nana and Salix pulchra shrub canopies at two locations near Toolik Lake, Alaska during the summer of 2012. The location of the PAR sensor and dataloggers were co-located with the LTER shrub plots (block 1 and 2), also used for the chamber flux and point frame measurements taken this same year.
Gaius Shaver, 2013 Summary of measured and modeled light curve parameters for diffuse, direct, and intermediate light curves for 14 whole-canopy 1mx1m plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/4bc7067bbfad38c9368c522cf1bf633d
14 1m x 1m shrub plots were sampled the summer of 2012 under direct and diffuse light conditions. Light response curves were measured under each light condition for each plot using a Li-Cor 6400 to measure net ecosystem exchange (NEP); these measurements were modelled using a saturatingMichaelis-Menton formula.
Gaius Shaver, 2013 Total and diffuse photosynthetically active radiation (PAR) recorded by a beam fraction (BF3) sensor during the summer of 2012 in vicinity of Toolik Lake, Alaska.. 10.6073/pasta/e07cdf2782e0016405f9845e02ef5542
This file contains irradiance (PAR) and diffuse light data logged from a beam fraction (BF3) sensor near Toolik Lake, Alaska during the summer of 2012. The data comes from a compilation of automated datalogger readings as well as measurements taken during the field season in conjunction with the Delta-T SunScan wand to measure PAR in tall shrub canopies dominated by Betula nana or Salix pulchra species. The sensor was leveled and mounted to a 2m tripod in each location, and programmed to record instantaneous readings in 30 second to 5 minute intervals.
Gaius Shaver, 2012 Plot descriptions and location data from datalogger, 1m x 1m chamber flux and point frame plots sampled near Toolik Field Station in Alaska the summer of 2012.. 10.6073/pasta/926e2979102d5d34c193582969a97bca
"2012_GS_PFandCH_GPS" contains GPS locations of all datalogger, 1m x 1m chamber flux and point frame plots sampled IVO Toolik Field Station in Alaska during the summer of 2012. The sorting variables (YEAR, DATE, SITE, GROUP, PLOT, TREAT, PLOT SIZE) are identical to those in other files with data collected that season. The main purpose of this file is for reference and as an aid in interpretation of data analyses and among-site comparisons.
Gaius Shaver, 2012 Harvest data including the shoot leaf area index, position in the canopy, and shoot and plant tissue area, count and mass for each shoot harvested at three levels in the canopy from 19 1m x 1m plots near LTER Shrub plots, Toolik Field Station, AK 2012.. 10.6073/pasta/11f24bddf5278229f37ea5fecf972415
Leaf and plant tissue area and mass from shoots harvested from 19 1m x 1m point frame plots near Toolik Field Station, AK during the summer of 2012. Six shoots were harvested from each plot, two from each canopy layer: upper, middle, and low. Each shoot came from a different plant, and the species selected was based on the species dominant in that canopy layer. The leaf area and mass were used to correct A/Ci and light response curves taken on each shoot [data published separately].
Gaius Shaver, 2012 Photosynthetically active radiation (PAR) measurements, relative humidity, and temperature data logged every five minutes from Betula nana and Salix pulchra shrub canopies, summer of 2012 in vicinity of Toolik Lake, Alaska.. 10.6073/pasta/c87015fc3a8f7266cd47968a5a6db76a
This file contains PAR , relative humidity, and temperature data logged every five minutes from within, below, and above Betula nana and Salix pulchra shrub canopies at two locations near Toolik Lake, Alaska during the summer of 2012. The location of the PAR sensor and dataloggers were co-located with the LTER shrub plots (block 1 and 2), also used for the chamber flux and point frame measurements taken this same year.
CSV
Subscribe to primary production