soil properties

Burn Terrestrial Data
Abstract
Gaius Shaver, James A Laundre, 2014 Summer soil temperature and moisture at the Anaktuvuk River Moderately burned site from 2010 to 2013. 10.6073/pasta/069fa3091323bb3a9a57f8d496a3fe4e
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 20, 2013, no replacement sensors were installed.
Gaius Shaver, James A Laundre, 2014 Summer soil temperature and moisture at the Anaktuvuk River Unburned site from 2010 to 2013. 10.6073/pasta/13cfe1cfa528cb7fe15bd8fb672b68d3
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 23, 2013, no replacement sensors were installed.
Gaius Shaver, James A Laundre, 2014 Summer soil temperature and moisture at the Anaktuvuk River Severely burned site from 2010 to 2013. 10.6073/pasta/3094e3e293703580c95e17ddce51af65
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central data logger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 20, 2013, no replacement sensors were installed.
root_dynamics data
Abstract
Loretta Johnson, Knute Nadelhoffer, George Kling, 2003 Soil Respirations from experiemental plots near Toolik Lake, AK for 2001. 10.6073/pasta/c2420e7c697014cac6b72b5b43a02129
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2001.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2006 Soil Respirations from experiemental plots near Toolik Lake, AK for 2004. 10.6073/pasta/0ec1429f90c86f186f59a1f0e412c2b2
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2004.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2004 Soil Respirations from experiemental plots near Toolik Lake, AK for 2002. 10.6073/pasta/7ae75645e026783edfd8eca8e8973fd6
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2002.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2007 Dissolved and gaseous 14C from experimental plots near Toolik Lake, AK from 2005. 10.6073/pasta/66cfe40e5f880ed46718bd01763a495f
This file contains the Specific Activity of 14C from dissolved and gaseous species of carbon sampled from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2005.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2005 Soil Respirations from experiemental plots near Toolik Lake, AK for 2003. 10.6073/pasta/439b02d9438238fb7ae6afe590ffd2ed
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2003.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2007 Soil Respirations from experiemental plots near Toolik Lake, AK for 2005. 10.6073/pasta/9fb33bf8c4cb6992ed29077cd5f3288c
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2005.
Ecotypes Disturbance experiments
Abstract
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Ion exchange membrane measure of nutrient availability of the 2015 experimental burn at Toolik Lake Field Station, Alaska 2016 . 10.6073/pasta/ca84cec21de79fd6364d7781374f84eb
An experimental burn conducted in the summer of 2015 to provide sites for an experiment whether seeds of Eriophorum vaginatum from different ecotypes could establish in recently burned areas.  It consisted of ten 2 meter X 2 meter plots along with a similar number of control plots. There was little seedling establishment but other data were collected on the plots.  Ion exchange membranes were used to measure nutrient availability over two time periods:  Early season (June) and mid season (July).
Thomas Parker, Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Soil respiration from a mycorrhizal and root exclusion experiment at Toolik Lake Field Station and Anaktuvuk River Burn, Alaska in 2016. 10.6073/pasta/40c946f076355aa2523ee4847f745b51
Organic soil from either the Anaktuvik severe burn or Toolik Lake were collected to test of effect of removal of mycorrhizae on decompositon of tundra at Toolik Lake and the Anaktuvuk Burn IN 2016.
A licor 6400 with 6400-09 soil respiration chamber was used to measure soil respiration (efflux) from the cores on a weekly basis.
Landscape Interactions
Abstract
Michael T Oconnor, Bayani T Cardenas, George Kling, Ann Chen, 2020 Soil stratigraphic data for the Toolik Lake region, North Slope of Alaska 2016-2019. 10.6073/pasta/68ab4e6f628909de50409df766e183d7
Soil stratification was determined by measuring the vertical thickness of three main strata (surface acrotelm, mid-depth catotelm, and bottom mineral soil) found in organic-rich or peat soils in the Toolik Lake region, North Slope of Alaska. Additional data for each site include dominant vegetation, landscape position, glacial surface, and microtopography.
Michael T Oconnor, Bayani T Cardenas, George Kling, Ann Chen, 2020 Soil hydraulic and thermal properties determined in surface organic and mineral soils in the region near Toolik Lake on the North Slope of Alaska, 2016-2019. 10.6073/pasta/402d7040a9303c0eb667590e0451ef4e
Soil cores of 5 cm diameter down to frozen
Thermokarst Soil
Abstract
Michelle Mack, Edward Schuur, 2013 Surface soil characteristics for six thermokarst chronosequences near Toolik Field Station and Noatak National Preserve, Alaska. 10.6073/pasta/ad0c79140211e1f4db2509fded5653b8
Surface organic and mineral soil layers were sampled in retrogressive thaw slump disturbance scars and nearby undisturbed tundra to estmate the influence of this thermo-erosional--thermokarst--disturbance type on soil carbon (C) and nitrogen (N) pools. Within six independent sites, we identified multiple thaw slump scars and determined time after disturbance for each scar by (1) aging the population of tall deciduous shrubs rooted in the mineral soil and (2) by dating the basal layer of the re-accumulating soil organic matter.
Terrestrial Soil Properties
Abstract
Donald Schell, 1993 Arctic LTER 1991: Percent moisture, bulk density, percent loss on ignition and percent organic carbon were measured for peat collected from soils in the Imnavait Creek watershed.. 10.6073/pasta/027e46f118de965c56f556b76518c06f
Percent moisture, bulk density, percent loss on ignition and percent organic carbon were measured for peat collected from soils in the Imnavait Creek watershed.
John Moore, 2013 Soil aggregate size distribution and particulate organic matter content from Arctic LTER moist acidic tundra nutrient addition plots, Toolik Field Station, Alaska, sampled July 2011.. 10.6073/pasta/504c0050d83f759ab7edb74064b8cab3
Soil aggregate size distribution, aggregate carbon and nitrogen, and light fraction carbon were determined for mineral soils in moist acidic tundra. Soil was sampled in control, and N+P plots of the Arctic LTER Moist Acidic Tundra plots established in 1989 and 2006.
Gaius Shaver, 2005 Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts, Arctic LTER 1987 to 2002. 10.6073/pasta/48fd52a09bf83e6c6bcecb49b48e9358
Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts. This file complies data collected at different times from 1987 through 2001 and includes initial extracts taken for buried bag method of net nitrogen mineralization.
Donald Schell, 1989 Radiocarbon dates for an elevational gradient by Toolik Lake, North Slope of Alaska 1988.. 10.6073/pasta/90a45bbe7265d037228609a2054afac5
Two cores of peat, approximately 15 cm2, were cut to the depth at which mineral soils were encountered at each site. The sites of sampling correspond to an elevational gradient leading from the lakeside upslope to the begining of the water track at the ridgetop. Each sample was divided into three sections, one section to be used for radiocarbon age , one for loss on ignition, and the remainder to be kept for future needs.
Gaius Shaver, 2006 Nitrogen mineralization was determined on Arctic LTERToolik and Sag River tussock tundra using the buried bag method, Toolik Field Station, Alaska, Arctic LTER 1989-2013.. 10.6073/pasta/79e01a508bb9021e265eec2a8201b2f9
Nitrogen mineralization was determined on LTER and Sag River tussock tundra using the buried bag method. Yearly bags have been deployed every August since 1990.
Terrestrial Trace Gases
Abstract
Sarah Hobbie, 2003 In situ soil respiration measured in the LTER treatment plots in moist acidic tussock and moist non-acidic tussock tundra, Toolik Field Station, North Slope Alaska, Arctic LTER 2002.. 10.6073/pasta/d84bf9b36c5102c3d96a4834affcd437
In situ soil respiration measured in the Arctic LTER treatment plots in moist acidic tussock and moist non-acidic tussock tundra
Gaius Shaver, 2013 Summary of soil temperature, moisture, and thaw depth for 14 chamber flux measurements sampled near LTER shrub sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7ccf390e6fe4824e93b7a2b844605a40
Soil temperature at 5cm and 10cm depth [°C], volumetric water content (VWC) [%] and depth of thaw [cm] for 14 shrub canopy flux plots measured in vicinity of the Toolik Field Station, AK in 2012.
Weather
Abstract
Gaius Shaver, James A Laundre, 2021 Soil temperatures and moisture for Arctic Long Term Experimental Research (ARC LTER) heath experimental plots, Toolik Field Station, North Slope Alaska for 2001-2018. . 10.6073/pasta/5bec91673a0bd177777381b490247241
Soil temperatures at 2 depths, 5 and 10 cm, canopy temperatures and soil moisture at 10 cm were measured in a heath tundra Arctic Long Term Experimental Research (ARC-LTER) site at Toolik Lake Field Station, North slope, Alaska. Air temperature and relative humidity and global radiation were also measured but are presented in another dataset. Only control and nutrient addition (nitrogen plus phosphorus ) treatments plots were measured .
Welker
Abstract
Jeff Welker, Paddy Sullivan, 2011 Welker ITEX Tussock Microclimate Data. 10.6073/pasta/7cb89929b6e87969e416add3dfea36f5
Hourly air temperature, humidity, wind speed, soil temperature and soil water data from the control area of the ITEX tussock tundra snowfence study site
Jeff Welker, Paddy Sullivan, 2011 Welker IPY snow fence shrub site soil temperatures and soil water content Toolik, Alaska 2008.. 10.6073/pasta/4966e339bb9da53ce005bc75b84eab56
Soil temperature from three locations on the eastern side of the Toolik River where by snow fences were established as part of IPY. This is a study of how soil temperatures at 10 cm and soil moisture change across the summer at our IPY snow fence site .
CSV
Subscribe to soil properties