soil temperature
Abstract | |
---|---|
Gaius Shaver, James A Laundre, 2023 Summer soil temperature and moisture at the Anaktuvuk River Moderately burned site from 2010 to 2013. 10.6073/pasta/6efb5c5e73e83ac58692b0e5ec23730e |
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 20, 2013, no replacement sensors were installed. |
Gaius Shaver, James A Laundre, 2014 Summer soil temperature and moisture at the Anaktuvuk River Unburned site from 2010 to 2013. 10.6073/pasta/13cfe1cfa528cb7fe15bd8fb672b68d3 |
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 23, 2013, no replacement sensors were installed. |
Gaius Shaver, James A Laundre, 2014 Summer soil temperature and moisture at the Anaktuvuk River Severely burned site from 2010 to 2013. 10.6073/pasta/3094e3e293703580c95e17ddce51af65 |
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central data logger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 20, 2013, no replacement sensors were installed. |
Abstract | |
---|---|
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Air and soil temperature in warmed and control plots of 2014 reciprocal transplant gardens Toolik Lake, Coldfoot, and Sagwon, Alaska 2015 and 2016. 10.6073/pasta/1ff781d88be7161218e0d2419648ca52 |
Air and soil temperatures from iButtons located at reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2015 and 2016. The reciprocal transplant gardens at Coldfoot (CF), Toolik Lake (TL), Sagwon (SG) Each plot contains three tussocks, 30-50 centimeters apart |
Abstract | |
---|---|
Gaius Shaver, 2008 Soil and canopy temperature data from the Arctic LTER Moist Acidic Tussock Experimental plots for 2006, Toolik Filed Station, North Slope, Alaska.. 10.6073/pasta/57bb8b7b7e14221fd613ad5c64d17f28 |
Soil and canopy temperature data from the LTER Moist Acidic Tussock Experimental plots. In 1989 a treatment plots were established in a moist acidic tundra. Treatments include nitrogen and phosphorus addition, warming with a simple greenhouse, warming with nitrogen and phosphorus addition, shading with shade cloth and shading with nitrogen and phosphorus. In 1990 data logger was installed in block 2 to measure soil temperatures and basic meteorological data. The plots are located on a hillside near Toolik Lake (68 38' N, 149 36'W). |
Gaius Shaver, 2005 Daily summary of 10 cm soil temperatures in the Arctic LTER moist acidic experimental plots from 1998 to present, Toolik Lake Field Station, Alaska.. 10.6073/pasta/89b6208bc6631129949eeca791063ed3 |
Daily summary of 10 cm soil temperatures in the Arctic LTER moist acidic experimental plots for the control (CT), greenhouse (GH), greenhouse plus nitrogen and phosphorus (GHNP) and nitrogen and phosphorus (NP) plots. Soil temperature probes in the tundra soil were problematic with frost heaving causing the depth of measurements to change. In order to provide a consistent year to year temperature record notes on changes in depths were used to select the temperature sensor that was within + or – 3 cm of the 10 cm and then averaged daily. |
Gaius Shaver, 2008 Soil and canopy temperature data from the Arctic LTER Moist Acidic Tussock Experimental plots for 2007, Toolik Filed Station, North Slope, Alaska.. 10.6073/pasta/b03ec31a5e4592965bf8f6fda01ae5e2 |
Soil and canopy temperature data from the LTER Moist Acidic Tussock Experimental plots. In 1989 a treatment plots were established in a moist acidic tundra. Treatments include nitrogen and phosphorus addition, warming with a simple greenhouse, warming with nitrogen and phosphorus addition, shading with shade cloth and shading with nitrogen and phosphorus. In 1990 data logger was installed in block 2 to measure soil temperatures and basic meteorological data. The plots are located on a hillside near Toolik Lake (68 38' N, 149 36'W). |
Gaius Shaver, 2019 Soil and canopy temperature data from the Arctic LTER Moist Acidic Tussock Experimental plots (MAT89) from 2012 to 2018, Toolik Field Station, North Slope, Alaska. 10.6073/pasta/5394ebed0c558da5882a456d7f4da9f3 |
Soil and canopy temperature data from the Arctic LTER 1989 Moist Acidic Tussock Experimental plots(MAT89). The station was established in 1990 in block 2 of a 4 block random block design. The plots are located on a hillside near Toolik Lake, Alaska (68 38' N, 149 36'W). Treatments include - control (CT), greenhouse (GH), greenhouse plus nitrogen and phosphorus (GHNP) shade (SH), shade plus nitrogen and phosphorus (SHNP) and nitrogen and phosphorus (NP). Profiles include above and within canopy, 10, 20 and 40 centimeter soil depths. Not all treatments have a complete profile. |
Gaius Shaver, James A Laundre, 2021 Soil temperature data from the control Arctic LTER Moist Acidic Tussock (MAT89) Experimental plots from 2008 to 2020, Toolik Field Station, North Slope, Alaska.. 10.6073/pasta/ab4694e723c4c3f94792bec64141c00f |
Soil temperature data from the 1989 LTER Moist Acidic Tussock (MAT89) Experimental plots. The logging station was installed in 1990 in block 2 of a four block experimental block design. The plots are located on a hillside near Toolik Lake (68 38' N, 149 36'W). Two replicates depth profiles (10, 20 ,40 centimeters) were installed in each block 2 experimental plots. Frost heaving has caused uncertain depths of measurements for many of the profiles. This data set contains only the control profiles from 2008 to 2020. |
Abstract | |
---|---|
Sarah Hobbie, James A Laundre, 2021 Hourly temperature and humidity data from the LTER Moist Non-acidic Tussock Experimental plots (MNT).. 10.6073/pasta/a48892da5bc9eab27b18d2364dea6998 |
Hourly data from the Toolik Moist Non-acidic Tussock Experimental plots (MNT). In 1999 a Campbell CR10x data logger was installed in block 2 of the experimental plots. The plots are located on a hillside near Toolik Lake (68 38' N, 149 36'W). Sensors were placed in control and greenhouse sites. Soil temperature profiles are reported in another file (1999-present_MNTsoil). |
Abstract | |
---|---|
Gaius Shaver, 1993 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1991.. 10.6073/pasta/796de31fbdcc64e069c9a8c8584adcf2 |
Weather data files for Arctic Tundra LTER site at Toolik Lake, North Slope Alaska. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2000 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1998.. 10.6073/pasta/3529d215b6567ad995d78051dd8e6061 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only sensors measured every 10 minutes and averaged every three hours are include in this file, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2009 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2008.. 10.6073/pasta/30a8f0ffe6b9cd027f836f9a24d338f6 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2001 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1999.. 10.6073/pasta/a0f31997240b80f479e0660aac14f2c1 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1991 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1989.. 10.6073/pasta/355ec2183a7e288845cf40cdc580e831 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, James A Laundre, Jessica Cherry, 2011 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2009.. 10.6073/pasta/6ff54a00221028ba6c8db498c14d8333 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2004 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2003.. 10.6073/pasta/ecbc13d01eb3d3d6e08673afa44db7ea |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2003 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2001.. 10.6073/pasta/bdcb69a22348418663a899e94d33d5a3 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2007 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2006.. 10.6073/pasta/5bb1125181e4ab5b55f7b17f269b3d05 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1992 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1990.. 10.6073/pasta/a49523d9eb3533aad1b1ee8b81435dc2 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2003 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2002.. 10.6073/pasta/00cb092b20d4446f7377da9d40a909f3 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1999 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1997.. 10.6073/pasta/2d59a519c38e35b90dfc5c4de73a3955 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1996 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1994.. 10.6073/pasta/7cf0ee6e5593881bbe6d76e164087266 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2007 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2005.. 10.6073/pasta/ff35043bf7a098a7eff7cb7daa8285b2 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1998 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1996.. 10.6073/pasta/55121b2342385812ae336b9040a457b2 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1994 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1992.. 10.6073/pasta/83fdeaddd6c193b69bc407285460c432 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2007 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2007.. 10.6073/pasta/9e243e6b1d95625f53fc9d7bd9e46716 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1999 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1988.. 10.6073/pasta/87f4250189dbf3232c09f5bc20d7842a |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1997 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1995.. 10.6073/pasta/d286c0c2ca00ad5b1b44d130447ca511 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2005 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2004.. 10.6073/pasta/9ce542501be6e2e3d17f7f30bb995b84 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 1995 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 1993.. 10.6073/pasta/341fa37422fb7880c3dbc5287910a2ed |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Gaius Shaver, 2002 Soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature data from Toolik Field Station, Toolik Lake, Alaska for 2000.. 10.6073/pasta/0109877754288bad0b678e3efa884343 |
Weather data file for Arctic Tundra LTER site at Toolik Lake. Only the sensors that are measured every 10 minutes and averaged every three hours are include, i.e. soil temperatures, lake temperature, lake depth, and evaporation pan depth and pan water temperature. |
Abstract | |
---|---|
James A Laundre, 2022 Hourly weather data from the Arctic LTER Wet Sedge Inlet Experimental plots from 1994 to present, Toolik Field Station, North Slope, Alaska.. 10.6073/pasta/87bb699469101659867f951b69219c37 |
Hourly weather data from the Arctic Tundra LTER wet sedge experimental site at Toolik Lake. The following parameters are measured every minute and averaged every hour: control plot air temperature and relative humidity at 3 meters and greenhouse plot air temperature and relative humidity at 1 meters (inside the greenhouse). |
James A Laundre, Gaius Shaver, 2022 Soil temperature data collected from the Arctic LTER wet sedge experimental site Toolik Field Station North Slope, Alaska from 1994 to 2020. 10.6073/pasta/b9042efc729ffb531bdb3974cb6d866c |
Soil temperature data collected every 4 hours from a wet sedge site at the Arctic Tundra LTER site at Toolik Lake. Temperatures are measured every 3 minutes and averaged every 4 hours in control, nitrogen alone, phosphorus alone, nitrogen and phosphorus, and greenhouse experimental plots soil temperatures. |
Abstract | |
---|---|
Michael Gooseff, Sarah Godsey, 2012 Meteorological data near thermokarst sites around Toolik Lake Field Station, Summer 2009-Summer 2012. 10.6073/pasta/5089ebdcad8fefee800fe3aa60b2437b |
GroMeteorological parameters were measured hourly adjacent to thermokarst features in the region around Toolik Field Station. Pressure, rainfall, wind speed and direction, solar radiation, air temperature and relative humidity were all measured at 1-3m above the ground surface with an Onset U30 weather station connected to all sensors. |
Michael Gooseff, Sarah Godsey, 2012 Ground temperature at and near NE 14 thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012. 10.6073/pasta/84046582477f7d660eaaf6526dc0ec46 |
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. NE14_TS02dot02_temp is located in the old NE14 thermokarst, upslope. |
Michael Gooseff, Sarah Godsey, 2012 Ground temperature at and near Toolik River thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012. 10.6073/pasta/00c2958f88d1ccad92755882e54cdef6 |
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. TRTK_GT01dot05_temp is located outside the TRTK thermokarst, midslope. |
Michael Gooseff, Sarah Godsey, 2012 Ground temperature at and near I-Minus-2 thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012. 10.6073/pasta/e46aa3731f4da34010d72745ba60a448 |
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. IM2_GT01dot06_temp is located inside of the I-Minus-2 Gulley thermokarst, downslope. |
Abstract | |
---|---|
Laura Gough, 2012 2010 thaw depth and soil temperature in LTER moist acidic tundra experimental plots. 10.6073/pasta/f42472946a52de02e1e1687d9214a2df |
In 2010, thaw depth and soil temperature were measured throughout the growing season in control and fertilized plots in the Arctic LTER's moist acidic tundra sites. |
Jennie DeMarco, Michelle Mack, 2013 Mass, C, N, and lignin from litter decomposed across a shrub gradient and with snow manipulations near Toolik Field Station between 2003 and 2009.. 10.6073/pasta/badba3735996e3de4cd02ee4bd1cfd5c |
In arctic tundra near Toolik Lake, Alaska, we incubated a common substrate in a snow addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated k values from our decomposition experiments to calculate community-weighted mass loss for each site. |
Jennie DeMarco, Michelle Mack, 2009 Net nitrogen mineralization from shrub gradient and snow manipulations, near Toolik field station, collect in the summer of 2006 and winter of 2006-2007. 10.6073/pasta/d63fe4fe5d2725aaa8732f1ae6548028 |
In arctic tundra, near Toolik Lake, Alaska, we quantified net N-mineralization rates under ambient and manipulated snow treatments at three different plant communities that varied in abundance and height of deciduous shrubs. |
Abstract | |
---|---|
Gaius Shaver, 2010 Soil temperature, volumetric water content and depth of thaw for ITEX CO2 flux survey plots 2003-2009.. 10.6073/pasta/e0b622e347540eae2ab410a2a3a7d7fd |
Soil temperature, moisture content and thaw depth of the ITEX flux survey plots. Survey plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska. Measurements were made during the growing seasons 2003 to 2009. |
Gaius Shaver, 2013 Summary of soil temperature, moisture, and thaw depth for 14 chamber flux measurements sampled near LTER shrub sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7ccf390e6fe4824e93b7a2b844605a40 |
Soil temperature at 5cm and 10cm depth [°C], volumetric water content (VWC) [%] and depth of thaw [cm] for 14 shrub canopy flux plots measured in vicinity of the Toolik Field Station, AK in 2012. |
Abstract | |
---|---|
Gaius Shaver, James A Laundre, 2021 Soil temperatures and moisture for Arctic Long Term Experimental Research (ARC LTER) heath experimental plots, Toolik Field Station, North Slope Alaska for 2001-2018. . 10.6073/pasta/5bec91673a0bd177777381b490247241 |
Soil temperatures at 2 depths, 5 and 10 cm, canopy temperatures and soil moisture at 10 cm were measured in a heath tundra Arctic Long Term Experimental Research (ARC-LTER) site at Toolik Lake Field Station, North slope, Alaska. Air temperature and relative humidity and global radiation were also measured but are presented in another dataset. Only control and nutrient addition (nitrogen plus phosphorus ) treatments plots were measured . |
Abstract | |
---|---|
Jeff Welker, Paddy Sullivan, 2011 Welker ITEX Tussock Microclimate Data. 10.6073/pasta/7cb89929b6e87969e416add3dfea36f5 |
Hourly air temperature, humidity, wind speed, soil temperature and soil water data from the control area of the ITEX tussock tundra snowfence study site |
Jeff Welker, Paddy Sullivan, 2011 Welker IPY snow fence shrub site soil temperatures and soil water content Toolik, Alaska 2008.. 10.6073/pasta/4966e339bb9da53ce005bc75b84eab56 |
Soil temperature from three locations on the eastern side of the Toolik River where by snow fences were established as part of IPY. This is a study of how soil temperatures at 10 cm and soil moisture change across the summer at our IPY snow fence site . |