Multi-trophic Impacts
Abstract | |
---|---|
Natalie Boelman, 2013 Weekly Normalized Difference Vegetation Index (NDVI) data from Roche Moutonnee, Toolik Field Station, Imnavait, and Sag river DOT sites, in the northern foothills of the Brooks Range, Alaska, summer 2010-2014.. 10.6073/pasta/30eb6c9c1d50286fc8213a07c083ad85 |
Weekly Normalized Difference Vegetation Index (NDVI) data from Roche Moutonnee, Toolik Lake Field Station, Imnavait Creek and Sagavanirktok River DOT sites in the northern foothills of the Brooks Range, Alaska. Located south of the Arctic LTER and Toolik Lake Field Station. Data collected from May to July 2010-2014. Methods and further data published in Ecography by Rich, et al. 2013. |
Abstract | |
---|---|
Helen Chmura, 2018 Lapland longspur and Gambel's white crowned sparrow egg and nestling survival near Toolik Field Station, Alaska, summers 2012-2016 . 10.6073/pasta/d56585f4793c93a37669d13a916b0437 |
This data set contains information about the daily status (alive/ dead) of Lapland longspur and Gambel's white-crowned sparrow eggs and nestlings studied near Toolik Field Station from 2012 to 2 |
Helen Chmura, 2018 Arthropod pitfall trap biomass captured (weekly) and pitfall biomass model predictions (daily) near Toolik Field Station, Alaska, summers 2012-2016.. 10.6073/pasta/2a68a3a7e72d175426edf5cae7904062 |
This data set contains information about the per pitfall trap arthropod biomass captured (or modeled using GAM modelling approaches) near Toolik Field Station from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). It is associated with publication DOI: 10.1111/jav.01712. |
Helen Chmura, 2018 Arthropod biomass captured by sweepnet (weekly) and sweepnet biomass model predictions (daily) near Toolik Field Station, Alaska, summers 2012-2016. 10.6073/pasta/217d7abf85fd5fa048a00ae0a9123d2b |
This data set contains information about the per sample sweepnet arthropod biomass captured (or modeled using GAM modelling approaches) near Toolik Field Station from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). It is associated with publication DOI: 10.1111/jav.01712. |
Helen Chmura, John C Wingfield, Marilyn Ramenofsky, 2020 Autumn departure from breeding site (date and time) in Gambel's white crowned sparrows near Toolik Field Station, Alaska, summers 2014-2016. 10.6073/pasta/a9bf73d9ffef03259089634e81c4a66a |
This data set contains information |
Abstract | |
---|---|
Natalie Boelman, 2013 Daliy weather data (wind, temperatrue, humididty, pressure, precipitation) from Roche Mountonnee , in the northern foothills of the Brooks Range, Alaska, summers 2010-2014.. 10.6073/pasta/82051b684ec80c6039e32ee4e72e21be |
Daily weather data from mid May to late July 2011 to 2013 from Roche Moutonnee (south of Toolik Field Station and Arctic LTER), in the northern foothills of the Brooks Range, Alaska. Parameters measured include: wind speed, wind directions, temperature, humidity, pressure and precipitation. |
Natalie Boelman, 2013 Daliy weather data from Sagavanirktok River DOT site, in the northern foothills of the Brooks Range, Alaska, May-July 2010-2014.. 10.6073/pasta/b95d5256dc6a00c506937a0bc698a39c |
Daliy weather data from mid May to late July 2011 to 2013 from Sagavanirktok Department of Transport (DOT) site (south of Toolik Field Station and Arctic LTER), in the northern foothills of the Brooks Range, Alaska. Parameters measured include: wind speed, wind directions, temperatrue, humididty, pressure and precipitation. (Rich, et al 2013). |
Natalie Boelman, 2013 Daily landscape-level snow cover percent data from (Rich, et al 2013) TLFS, IMVT, and SDOT sitse, in the northern foothills of the Brooks Range, Alaska,spring 2011 to 2014.. 10.6073/pasta/3e946e77c27235edb42176d2fae5e7d5 |
Daily landscape-level snow cover percent data from Toolik Lake Field Station (TFS), Imnavait (IMVT), and the Sagavanirktok River DOT site (SDOT), in the northern foothills of the Brooks Range, Alaska. Data collected from May to early June 2011 to 2014. |
Helen Chmura, 2018 Hourly meteorological data gapfilled for sensor downtimes collected near Toolik Field Station, Alaska, summers 2012-2016. 10.6073/pasta/7368b2e1928127bdf51b9ed7d87e7f52 |
This data set includes meteorological parameters collected near Toolik Field Station from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). It also includes meteorological data collected by two additional entities that are available on public repositories. Toolik data reflect data collected by the Toolik Envronmental Data Center and Imnavait data reflect data collected by the Arctic Observatory Network (AON). |
Helen Chmura, 2018 Presence/absence of new snow-fall scored from time-lapse photography collected near Toolik Field Station, Alaska, summers 2012-2016. 10.6073/pasta/a1d568eef49aabb3c3ff77de4ea2bbcb |
This data set describes the presence/absence of new snowfall approximated daily using time -lapse photography images near Toolik Field Station during summers from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). Additional cameras funded by other grants were also used for scoring including multiple Toolik EDC timelapse images taken at Toolik, Atigun Ridge, and Imnavait. |
Abstract | |
---|---|
, Multi-trophic impacts of climate warming in Arctic tundra: from plants, to bugs, to migratory songbirds. |
As a consequence of global warming, arctic North America has been ?greening? over the past several decades, with increases in relative abundance and size of shrubs documented in numerous locations. Much of the research on this topic examines how this shift toward more woody species affects element cycling, particularly carbon, with potential feedbacks to the atmosphere regionally and globally. To date, the response of higher trophic levels to such shifts in vegetation in the Arctic has not been well studied. |