Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2010 to 2020. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Data Set Results
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61, 1991 pp.1-31).
Leaf areas were measured on quadrats harvested in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Biomass was also measured for each quadrat but is in a separate file.
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file is the July 26-27, 1984 harvest of the controls and nitrogen + phosphorus treatments.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
Output data sets of the MBL-GEM III model for a typical tussock-tundra hill slope. The model is described in two papers:
Le Dizès, S., Kwiatkowski B.L., Rastetter E.B., Hope A., Hobbie J.E., Stow D., Daeschner S., 2003 Modelling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska), Journal of Geophysical Research Vol. 108 No. D2 10.1029/2001JD000960.
Output data set of the MBL-GEM III model run for tussock tundra in the Kuparuk River Basin, Alaska, described in detail in Le Dizès, S., B. L. Kwiatkowski, E. B. Rastetter, A. Hope, J. E. Hobbie, D. Stow, and S. Daeschner, Modeling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska), J. Geophys. Res., 108(D2), 8165, doi:10.1029/2001JD000960, 2003.
This file contains the consolidated data for percent cover of dominant bryophytes and other easily identifiable macro-algae in the experimental reaches of the Kuparuk River beginning in 1993 and updated annually. In some years percent cover was recorded more than one time per season. In all years percent cover was recorded in riffle habitats and in some (early) years percent cover was recorded for pool habitats. Moss point transects have been done on the Kuparuk since 1993.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note: Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus". The tissues with 8 quadrats were "Greenhouse" treatment.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
The data set describes stable carbon and nitrogen isotopes and carbon and nitrogen concentrations from an August 2012 pluck of a fertilization experiment begun in 2006. Fertilization was with nitrogen (N) and phosphorus (P). Fertilization levels included control, F2, F5, and F10, with F2 corresponding to yearly additions of 2 g/m2 N and 1 g/m2 P, F5 corresponding to yearly additions of 5 g/m2 N and 2.5 g/m2 P, and F10 corresponding to yearly additions of 10 g/m2 N and 5 g/m2 P. After harvest, plants were separated by species and then by tissue.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
The Biocomplexity Station, now known as the Tussock Station, was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of car
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
The Biocomplexity Station, now known as the Tussock Station, was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of car
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Transplant gardens at Toolik Lake and Sagwon were established in 2014. At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SAG, 69°25′26″N, 148°42′49″W) were transplanted. Half the transplanted tussocks were grown under ambient conditions, while the other half were exposed to passive warming supplied by open-top chambers (OTC).
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
File containing data on bacterial productivity in lakes and streams. Samples were collected at various sites near Toolik Lake Field Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth, and bacterial production.
We deployed three eddy covariance towers along a burn severity gradient (i.e.
We deployed three eddy covariance towers along a burn severity gradient (i.e.
We deployed three eddy covariance towers along a burn severity gradient (i.e.
Ecosystem carbon dioxide (CO2) flux light response curves were measured from Arctic LTER heath tundra herbivore exclosures. This file contains the CO2 and normalized difference vegetation index (NDVI) data for each plot