In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
Data Set Results
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for control and fertilized plots. Leaf area data is in 2000gsttLA
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.edu/arc).
Soil temperature, moisture content and thaw depth of the ITEX flux survey plots. Survey plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska. Measurements were made during the growing seasons 2003 to 2009.
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland, and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Estimated aerial plant % cover by functional type in flux plots measured during the ITEX cirumarctic flux survey 2004-2006. Survey plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska. Measurements were made during the growing seasons 2003 to 2009.
Ecosystem CO2 flux light response curves were measured on 1m x 1m plots ( some 0.3m x 0.3m plots in 2006 and some 0.7m x0.7m plots in 2009) across the arctic. This file contains the best fit parameters that describe these light response curves, together with corresponding NDVI data for each curve.
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Ecosystem CO2 flux light response curves were measured on 1m x 1m plots across the arctic. This file contains the CO2 and H2O flux measurements and NDVI data for each plot. Survey plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska. Measurements were made during the growing seasons 2003 to 2009.
Estimated aerial plant % cover by species in flux plots measured during the ITEX circumarctic flux survey 2004-2006. Flux plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska.
The Anaktuvuk River Fire occurred in 2007 on the North Slope of Alaska. In 2008, three eddy covariance towers were established at sites represent ing unburned tundra, moderately burned tundra, and severely burned tundra. Several times during the 2008-2014 growing seasons, thaw depth was measured at approximately 70 points near each of these towers . Data presented here are the individual measurements for each site and date.
This dataset includes every pin-hit recorded from 19 1m x 1m point frame plots of tall Betula nana and Salix pulchra canopies sampled at the Toolik Field Station, AK the summer of 2012. Twenty-five evenly spaced holes within the plot were sampled for each point frame for which the height and species was recorded for each leaf, stem, or plant that intersected the pin when lowered perpendicular to the ground. Non-woody species were grouped into functional groups (e.g. forb, graminoid, moss) and not identified to species.
Maximum canopy height measurements for deciduous shrub canopies sampled for both 1m x 1mc hamber flux polots (n=14) and point frame plots (n=19) in the summer of 2012 near LTER shrub plots at Toolik Lake, AK. The canopies were dominated either by Salix pulchra or Betula nana species, and plot locations were preferentially selected for tall canopies (height > 75 cm). The methods for the chamber flux and point frames are outlined here briefly, though the data from these measurements are contained in separate files.
“Flux data” contains the CO2 and water flux data along with the corresponding diffuse light fraction at the time of measurement from the ITEX shrub canopy project taken at Toolik Lake, Alaska in 2012. Each record is a single LiCor flux measurement made with LiCor 6400 photosynthesis system, with associated average pressure, temperature, PAR, water vapor, and other data such as NDVI and LAI measurements taken with a DeltaT SunScan wand under both direct and diffuse light conditions.
Summary of three methods used to estimate the Leaf Area Index (LAI) of 19 1m x 1m plots sampled with a point frame near the LTER Shrub plots at the Toolik Field Station in AK the summer of 2012. The methods used were: (1) exponential relationship between LAI and NDVI as measured above the canopy with a Unispec spetroradiometer; (2) Delta-T SunScan canopy analyzer held at 5 cm above the ground under both direct and diffuse light conditions; (3) pin-drop point frame tequnique. Where values have been averaged (such as for the NDVI and SunScan measurements), the standard deviation is given.
Leaf area index (LAI) measurements were taken with the Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. conditions The data includes all outputs from the SunScan wand: time of measurement, transmitted light, spread of PAR sensors, beam fraction, and zenith angle.
Total and individual subsample species percent cover data for all plots where flux or point frame measurements were made in 2012 IVO the LTER Shrub vegetation plots at Toolik Field Station. All plots sampled were dominated either by B. nana or S. pulchra canopies. Cover estimates were made for the five most dominate functional groups using a 1m x 1m grid with 20cm2 blocks with each square representing four percent of the total area. Percentages represent absolute cover so do not sum to 100%.
A/Ci curve parameters and modeled carboxylation, electron transport, and triose-phosphate utilization efficiency rates from shoots clipped from low, mid, and the top of tall, shrub canopies dominated either by Salix pulchra or Betula nana species. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy. These plots were located near the LTER shrub plots at the Toolik Field Staion, AK for point frame measurements, and all measurements took place the summer of 2012.
Soil temperature at 5cm and 10cm depth [°C], volumetric water content (VWC) [%] and depth of thaw [cm] for 14 shrub canopy flux plots measured in vicinity of the Toolik Field Station, AK in 2012.
This dataset contains light response curves and modeled light curve parameters from shoots clipped from low, mid, and the top parts of tall, shrub canopies dominated either by Salix pulchra or Betula nana. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy in plots located near the LTER shrub plots at Toolik Field Station, AK the summer of 2012. The species harvested were chosen based on the species present in each plot, thus the species from each segment of the canopy may not be the same.
The percent carbon and nitrogen from leaves of shoots harvested from 1m x 1m point frame plots the summer of 2012 at Toolik Lake, Alaska. were measured on a ThermoScientific 2000. For each point frame plot, six shoots were harvested from upper, middle, and low sections of the canopy. The photosynthetic capacity of each shoot was analyzed with a LiCor 6400 infra-red gas analyzer by being run through a light response and A/Ci curve.
This file contains limited daily summaries of PAR, relative humidity, and temperature data monitored above, within, and below Betula nana and Salix pulchra shrub canopies at two locations near Toolik Lake, Alaska during the summer of 2012. The location of the PAR sensor and dataloggers were co-located with the LTER shrub plots (block 1 and 2), also used for the chamber flux and point frame measurements taken this same year.
14 1m x 1m shrub plots were sampled the summer of 2012 under direct and diffuse light conditions. Light response curves were measured under each light condition for each plot using a Li-Cor 6400 to measure net ecosystem exchange (NEP); these measurements were modelled using a saturatingMichaelis-Menton formula.
This file contains irradiance (PAR) and diffuse light data logged from a beam fraction (BF3) sensor near Toolik Lake, Alaska during the summer of 2012. The data comes from a compilation of automated datalogger readings as well as measurements taken during the field season in conjunction with the Delta-T SunScan wand to measure PAR in tall shrub canopies dominated by Betula nana or Salix pulchra species. The sensor was leveled and mounted to a 2m tripod in each location, and programmed to record instantaneous readings in 30 second to 5 minute intervals.
"2012_GS_PFandCH_GPS" contains GPS locations of all datalogger, 1m x 1m chamber flux and point frame plots sampled IVO Toolik Field Station in Alaska during the summer of 2012. The sorting variables (YEAR, DATE, SITE, GROUP, PLOT, TREAT, PLOT SIZE) are identical to those in other files with data collected that season. The main purpose of this file is for reference and as an aid in interpretation of data analyses and among-site comparisons.
Within-canopy PAR was measured with a Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. The data includes all outputs from the SunScan wand: time of measurement, spread of PAR sensors, total irradiance, total diffuse light, and individual outputs of 64-PAR sensors on the SunScan wand. These measurements were taken for 1m x 1m chamber flux (n=14) and point frame (n=19) plots as well as sites four montitored remotely by PAR sensors located above, within, and below shrub canopies.
Leaf and plant tissue area and mass from shoots harvested from 19 1m x 1m point frame plots near Toolik Field Station, AK during the summer of 2012. Six shoots were harvested from each plot, two from each canopy layer: upper, middle, and low. Each shoot came from a different plant, and the species selected was based on the species dominant in that canopy layer. The leaf area and mass were used to correct A/Ci and light response curves taken on each shoot [data published separately].
This file contains PAR , relative humidity, and temperature data logged every five minutes from within, below, and above Betula nana and Salix pulchra shrub canopies at two locations near Toolik Lake, Alaska during the summer of 2012. The location of the PAR sensor and dataloggers were co-located with the LTER shrub plots (block 1 and 2), also used for the chamber flux and point frame measurements taken this same year.
Inorganic Nitrogen and phosphorus were analyzed on snow samples taken from two snow pits near the long-term acrtic LTER mesic acidic tussock experimental plots. The snow layers in each pit were described and sampled separtely with the help of Matthrew Sturm.
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 20, 2013, no replacement sensors were installed.
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 23, 2013, no replacement sensors were installed.