Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Data Set Results
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note: Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus". The tissues with 8 quadrats were "Greenhouse" treatment.
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Note: Corrections were made to Particulate phosphorus values. See version 5 notes.
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
The Kuparuk River has been the central research location on the impact of added phosphorus to arctic streams. Additions of phosphorus occred since 1983. Today, 4 specific reaches show certain characteristics based on the years that they recieved fertilization. Whole Stream Metabolism is a way to quantify primary production of this stream system. Calculations were done using dissolved oxygen, discharge, stage, light and temperature measured by sondes and other equipment strategically deployed in the field at locations to quantify each of the unique stream reaches.
Stream discharge, temperature, and conductivity of Toolik Lake Inlet stream for 2010 - 2018 study season. Water level was recorded with a Stevens PGIII Pulse Generator and Conductivity (EC) and Temperature measured with a Campbell Scientific Model 247 Conductivity and Temperature probe.
The data set describes stable carbon and nitrogen isotopes and carbon and nitrogen concentrations from an August 2012 pluck of a fertilization experiment begun in 2006. Fertilization was with nitrogen (N) and phosphorus (P). Fertilization levels included control, F2, F5, and F10, with F2 corresponding to yearly additions of 2 g/m2 N and 1 g/m2 P, F5 corresponding to yearly additions of 5 g/m2 N and 2.5 g/m2 P, and F10 corresponding to yearly additions of 10 g/m2 N and 5 g/m2 P. After harvest, plants were separated by species and then by tissue.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
The Biocomplexity Station, now known as the Tussock Station, was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of car
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra.
Measures of soil nutrient content (available N and P, Extractable N and P, Total C, N and P), and microbial biomass and activity (exoenzyme activity) were measured for organic and mineral soils on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra (organic soils only).
This data set contains information about the daily status (alive/ dead) of Lapland longspur and Gambel's white-crowned sparrow eggs and nestlings studied near Toolik Field Station from 2012 to 2
This data set includes meteorological parameters collected near Toolik Field Station from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). It also includes meteorological data collected by two additional entities that are available on public repositories. Toolik data reflect data collected by the Toolik Envronmental Data Center and Imnavait data reflect data collected by the Arctic Observatory Network (AON).
This data set contains information about the per pitfall trap arthropod biomass captured (or modeled using GAM modelling approaches) near Toolik Field Station from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). It is associated with publication DOI: 10.1111/jav.01712.
This data set describes the presence/absence of new snowfall approximated daily using time -lapse photography images near Toolik Field Station during summers from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). Additional cameras funded by other grants were also used for scoring including multiple Toolik EDC timelapse images taken at Toolik, Atigun Ridge, and Imnavait.
This data set contains information about the per sample sweepnet arthropod biomass captured (or modeled using GAM modelling approaches) near Toolik Field Station from 2012 to 2016 under National Science Foundation (NSF) Office of Polar Programs ARC 0908444 (to Laura Gough), ARC 0908602 (to Natalie Boelman), and ARC 0909133 (to John Wingfield). It is associated with publication DOI: 10.1111/jav.01712.
Transplant gardens at Toolik Lake and Sagwon were established in 2014. At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SAG, 69°25′26″N, 148°42′49″W) were transplanted. Half the transplanted tussocks were grown under ambient conditions, while the other half were exposed to passive warming supplied by open-top chambers (OTC).
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
In contribution to the Arctic Observing Network, the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses on simultaneous measurements of carbon, water and energy fluxes of the terrestrial landscape at hourly, da
These measurements repeat the measurements made by Shaver et al. (1986) along the Dalton Highway at some of the same sites.
Shaver, G. R., N. Fetcher, and F. S. Chapin III. 1986. Growth and flowering in Eriophorum vaginatum: Annual and latitudinal variation. Ecology 67:1524-1535.
An experimental burn conducted in the summer of 2015 to provide sites for an experiment whether seeds of Eriophorum vaginatum from different ecotypes could establish in recently burned areas. It consisted of ten 2 meter X 2 meter plots along with a similar number of control plots. There was little seedling establishment but other data were collected on the plots. Ion exchange membranes were used to measure nutrient availability over two time periods: Early season (June) and mid season (July).
Organic soil from either the Anaktuvik severe burn or Toolik Lake were collected to test of effect of removal of mycorrhizae on decompositon of tundra at Toolik Lake and the Anaktuvuk Burn IN 2016.
A licor 6400 with 6400-09 soil respiration chamber was used to measure soil respiration (efflux) from the cores on a weekly basis.
Quantum yield of Photosystem II estimated from chlorophyll fluorescence of Eriophorum vaginatum leaves from tussocks in the reciprocal transplant gardons at Toolik Lake, Coldfoot, and Sagwon in 2016. A single transplant tussock per plot was repeatedly measured through the season.
Normalized difference vegetation index (NDVI) and Leaf area index (LAI) data from tussocks in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2016.
Air and soil temperatures from iButtons located at reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2015 and 2016. The reciprocal transplant gardens at Coldfoot (CF), Toolik Lake (TL), Sagwon (SG) Each plot contains three tussocks, 30-50 centimeters apart
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the Arctic Observing Network that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.
Data file of the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream from a reference location), elevation, treatment, date-time, category, and water type (lake, surface, soil). Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, and average thaw depth in soil. Chemical analyses for the sample include alkalinity; dissolved inorganic and organic carbon (DIC and DOC); dissolved gas
File describing the metological conditions on Toolik Lake (named the Toolik Lake Climate station), adjacent to the Toolik Field Research Station (68 38'N, 149 36'W). This is a floating climate s
File describing the meteorological conditions on Toolik Lake (named the Toolik Lake Climate station), adjacent to the Toolik Field Research Station (68 38'N, 149 36'W). This is a floating climat
Relative percent cover of plant species was measured in low nutrient LTER moist acidic tundra experimental plots (MAT06). Treatments include a gradient of nitrogen and phosphorus additions along with ammonium and nitrate alone.
Relative percent cover of plant species was measured in moist acidic tundra experimental plots begun in 1981 in 2014. Treatments include Control and Nitrogen and Phosphorus.
Soil and canopy temperature data from the Arctic LTER 1989 Moist Acidic Tussock Experimental plots(MAT89). The station was established in 1990 in block 2 of a 4 block random block design. The plots are located on a hillside near Toolik Lake, Alaska (68 38' N, 149 36'W). Treatments include - control (CT), greenhouse (GH), greenhouse plus nitrogen and phosphorus (GHNP) shade (SH), shade plus nitrogen and phosphorus (SHNP) and nitrogen and phosphorus (NP). Profiles include above and within canopy, 10, 20 and 40 centimeter soil depths. Not all treatments have a complete profile.
Relative percent cover of plant species was measured in Arctic Long-Term Ecological Research (ARC-LTER) Dry Heath experimental plots. Treatments include Nitrogen Phosphorus (NP), and Control (CT), Nitrogen Phosphorus Unfenced (NFNP), Nitrogen Phosphorus Small Fenced (SFNP), Nitrogen Phosphorus Large Fenced (LFNP), Control (CT), Control Small Fenced (CTSF), and Control Large Fenced (LFCT).
Relative percent cover of plant species was measured in ARC-LTER 1989 moist acidic tundra experimental plots. Treatments include Control (CT), Nitrogen Phosphorus (NP), Nitrogen (N), Phosphorus (P), and Greenhouse Control (GHCT). In 1996 on unassigned plots, an experiment that manipulate herbivory presence and nutrients was started. Treatments include Control Unfenced (NFCT), Nitrogen Phosphorus Unfenced (NFNP), and Small Fenced Control (CTSF). Not all treatments were measured each year.
Two Figaro TGS 2600 sensors were installed at the Toolik Wet Sedge site in late June 2012 to 2018.