Petasites
Abstract | |
---|---|
Adrian V Rocha, 2020 Point-frame measurments from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/c28d78e8a3c11b52b38cf1f1c01dc671 |
This file contains point-frame measurements from a |
Abstract | |
---|---|
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2004 14C Uptake by Arctic Tussock Tundra Vegetation from 2002-2006. 10.6073/pasta/4950b6f3074120dafba5c46aa7f6991f |
This file contains the 14C content of tussock tundra vegetation from 2002-2006. The 14C labeling occurred the summer of 2002. |
Abstract | |
---|---|
Donald Schell, 1990 Arctic LTER 1988: del 13C and del 15N ratios measurement for Eriophorum, Carex and lichen species in water tracks at Toolik and Imnavait Creek. 10.6073/pasta/d1771a19979f042e44a1813fe935c426 |
del 13C and del 15N ratios were measured for plant and lichen in watertracks in the Toolik Lake drainage and the east facing slope of the Imnavait Creek area. Sampling locations for each species for a specific date were chosen across an elevation gradient starting from the lakeside and leading to ridge crest. The vegetation was dried and analyzed for stable isotopes. |
Gaius Shaver, Laura Gough, 1999 Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra and nonacidic tundra near Arctic LTER Toolik Plots and acidic tundra near Sagwon,Arctic LTER 1997.. 10.6073/pasta/cf45e059c576273ec58ce24769793f28 |
Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. All vascular species were sorted, divided into new and old growth, dried, and weighed. Lichens were separated by genus in all quadrats. In half of the quadrats (n=4), mosses were separated by species. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen.txt). |
Abstract | |
---|---|
Erik Hobbie, John Moore, 2017 Carbon and nitrogen isotopes and concentrations in terrestrial plants from a six-year (2006-2012) fertilization experiment at the Arctic LTER, Toolik Field Station, Alaska.. 10.6073/pasta/011d1ba5f14fc9057dd67ff201174543 |
The data set describes stable carbon and nitrogen isotopes and carbon and nitrogen concentrations from an August 2012 pluck of a fertilization experiment begun in 2006. Fertilization was with nitrogen (N) and phosphorus (P). Fertilization levels included control, F2, F5, and F10, with F2 corresponding to yearly additions of 2 g/m2 N and 1 g/m2 P, F5 corresponding to yearly additions of 5 g/m2 N and 2.5 g/m2 P, and F10 corresponding to yearly additions of 10 g/m2 N and 5 g/m2 P. After harvest, plants were separated by species and then by tissue. |
Abstract | |
---|---|
Ned Fetcher, Jianwu Tang, Michael L Moody, Thomas Parker, 2019 Effects of shading on tundra vegetation senescence at Toolik Lake, Coldfoot, Sagwon - Alaska 2016 . 10.6073/pasta/52dcd21509c4d8638ccfb5148b2ac119 |
Data on the effects of shading tundra vegetation from the sun when it is low in on the horizon in the north. If light quality was altered through shading, phenology might be affected. Senescence (color change) was measured for the common tundra species. |
Abstract | |
---|---|
Gaius Shaver, Laura Gough, 1998 Vascular plant species list, by quadrat, for harvests of tussock , wet sedge and dry heath tundra and a toposequence which included "shrub/lupine," "riverside willow" and "footslope Equisetum" communities North Slope Alaska, Arctic LTER 1983-1996.. 10.6073/pasta/19d4931588b100dc2a0abc23d849e873 |
Vascular plant species list, by quadrat, for harvests of tussock tundra, wet sedge tundra, dry heath tundra, and a toposequence which also included "shrub/lupine," "riverside willow" and "footslope Equisetum" communities. Includes results of long-term nutrient enrichment, increased temperature, and shade houses in selected tundra types. |
Laura Gough, 2021 Relative percent cover of plant species in low nutrient LTER moist acidic tundra experimental plots (MAT06) established in 2006 for years 2008, 2010-2020, Arctic LTER Toolik Field Station Alaska. . 10.6073/pasta/3b28ed94fe7916e840ff3313dbe3450c |
Relative percent cover of plant species was measured in low nutrient LTER moist acidic tundra experimental plots (MAT06). Treatments include a gradient of nitrogen and phosphorus additions along with ammonium and nitrate alone. |
Laura Gough, 2019 Relative percent cover of plant species for 2014 in LTER moist acidic tundra experimental plots established in 1981, Arctic LTER Toolik Field Station, Alaska. 10.6073/pasta/f619b425d2997d9f2f831cff207a1819 |
Relative percent cover of plant species was measured in moist acidic tundra experimental plots begun in 1981 in 2014. Treatments include Control and Nitrogen and Phosphorus. |