chlorophyll a

Stream networks are intimately connected to the landscapes through which they flow and significantly transform nutrients and organic matter that are in transport from landscapes to oceans. This work will quantify the relative influences of throughflow, lateral inputs, and hyporheic (a layer of surface sediments that contains water which exchanges continuously with water in the open channel) regeneration on the seasonal fluxes of C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. This objective is a logical extension of earlier. This work will focus on seasonal dynamics at different river reach scales (1st to 4th order streams) and will lay the groundwork for a whole river network model to integrate the influences of throughflow, lateral inputs, hyporheic regeneration, and in-stream metabolism on C, N, and P fluxes through an entire river network.
For more information see project's web site:  Changing Seasonality and Arctic Stream Networks

Changing Seasonality and Arctic Stream Networks
Title Abstract
CSASN Benthic Nutrients from 2010 to 2012 at I8 Inlet, I8 Outlet, Peat Inlet and Kuparuk Rivers
The Changing Seasonality of Arctic Stream Systems (CSASN) did extensive arctic stream research from 2010 to 2012. Specifically, the CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. Throughout the project, samples were collected from... more
Lakes Chlorophyll and Primary Production
Title Abstract
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Alaska, Arctic LTER. Summer 2010 to 2018
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2010 to 2014. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.
Decadal file describing the chlorophyll a and primary production in  various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009.  Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production.  The amount of chlorophyll a and pheophytin were also measured.
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Thermokarst Streams
Title Abstract
ARCSSTK benthic nutrients and chloropyll-a
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. Specifically, the ARCSSTK goal Streams goal was to quantify the relative influences of thermokarst inputs on the biogeochemical structure and function of receiving streams. Throughout the project, samples were collected from Benthic Rock Scrubs and measured for cholorophyll-a and particulate carbon (C), nitrogen (N) and phosphorus (P).
Lakes Physical and Chemical Parameters
Title Abstract
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2018
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 1990 to 1999. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.
Decadal file describing the physical lake parameters recorded at various lakes near Toolik Research Station during summers from 1983 to 1989. Depth profiles at the sites of physical measures were collected in situ. Values measured included temperature, conductivity, pH, dissolved oxygen, Chlorophyll A, Secchi disk depth and PAR. Note that some sample depths also have additional parameters measured and available in separate files for water chemistry and primary production.
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 2000 to 2009. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Subscribe to chlorophyll a