Bibliography
“Effects Of Long-Term Climate Trends On The Methane And Co2 Exchange Processes Of Toolik Lake, Alaska”. Frontiers In Environmental Science 10. Frontiers In Environmental Science (2022). doi:10.3389/fenvs.2022.948529.
. “Arctic Tundra”. In Arctic Ecology, 103-132. Arctic Ecology. John Wiley & Sons, Ltd, 2021. doi:https://doi.org/10.1002/9781118846582.ch5.
. “The Challenges Of Long Term Ecological Research: A Historical Analysissustaining Long-Term Ecological Research: Perspectives From Inside The Lter Program”. In, 59:81 - 116. Cham: Springer International Publishing, 2021. doi:10.1007/978-3-030-66933-1_4.
. “Solar Position Confounds The Relationship Between Ecosystem Function And Vegetation Indices Derived From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 298-299. Agricultural And Forest Meteorology (2021): 108291. doi:10.1016/j.agrformet.2020.108291.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems. Ecosystems (2020). doi:10.1007/s10021-020-00542-3.
. “Interannual, Summer, And Diel Variability Of Ch4 And Co2 Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environ. Sci.: Processes Impacts 22. Environ. Sci.: Processes Impacts (2020): 2181-2198. doi:10.1039/D0EM00125B.
. “Biotime: A Database Of Biodiversity Time Series For The Anthropocene”. Global Ecology And Biogeography 27. Global Ecology And Biogeography (2018): 760-786. doi:10.1111/geb.12729.
. “Long-Term Nutrient Addition Alters Arthropod Community Composition But Does Not Increase Total Biomass Or Abundance”. Oikos 127, no. 3. Oikos (2018): 460 - 471. doi:10.1111/oik.04398.
. “Nitrate Is An Important Nitrogen Source For Arctic Tundra Plants”. Proceedings Of The National Academy Of Sciences 115, no. 13. Proceedings Of The National Academy Of Sciences (2018): 3398 - 3403. doi:10.1073/pnas.1715382115.
. “Orchidee-Peat (Revision 4596), A Model For Northern Peatland Co2, Water, And Energy Fluxes On Daily To Annual Scales”. Geoscientific Model Development 11, no. 2. Geoscientific Model Development (2018): 497 - 519. doi:10.5194/gmd-11-497-201.
. “Ecosystem Responses To Climate Change At A Low Arctic And A High Arctic Long-Term Research Site”. Ambio 46, no. S1. Ambio (2017): 160 - 173. doi:10.1007/s13280-016-0870-x.
. “Long-Term Release Of Carbon Dioxide From Arctic Tundra Ecosystems In Alaska”. Ecosystems 20, no. 5. Ecosystems (2017): 960 - 974. doi:10.1007/s10021-016-0085-9.
. “Modeling Long-Term Changes In Tundra Carbon Balance Following Wildfire, Climate Change And Potential Nutrient Addition”. Ecological Applications 27, no. 1. Ecological Applications (2017): 105–117 . doi:10.1002/eap.1413.
. “Shrub Encroachment In Arctic Tundra: Betula Nana Effects On Above- And Belowground Litter Decomposition”. Ecology 98, no. 5. Ecology (2017): 1361 - 1376. doi:10.1002/ecy.1790.
. “C–N–P Interactions Control Climate Driven Changes In Regional Patterns Of C Storage On The North Slope Of Alaska”. Landscape Ecology 31, no. 1. Landscape Ecology (2016): 195 - 213. doi:10.1007/s10980-015-0266-5.
. “Effects Of Long-Term Nutrient Additions On Arctic Tundra, Stream, And Lake Ecosystems: Beyond Npp”. Oecologia. Oecologia (2016). doi:10.1007/s00442-016-3716-0.
. “Forty Arctic Summers”. In Long-Term Ecological Research: Changing The Nature Of Scientists., 99-108. Long-Term Ecological Research: Changing The Nature Of Scientists. New York, NY: Oxford University Press, 2016.
. “Contrasting Soil Thermal Responses To Fire In Alaskan Tundra And Boreal Forest”. Journal Of Geophysical Research: Earth Surface 120, no. 2. Journal Of Geophysical Research: Earth Surface (2015): 363-378. doi:10.1002/2014jf003180.
. “Convergence Of Soil Nitrogen Isotopes Across Global Climate Gradients”. Scientific Reports 5. Scientific Reports (2015): 8280. doi:10.1038/srep08280.
. “Modeling Carbon–Nutrient Interactions During The Early Recovery Of Tundra After Fire”. Ecological Applications 25, no. 6. Ecological Applications (2015): 1640 - 1652. doi:10.1890/14-1921.1.
. “Northward Displacement Of Optimal Climate Conditions For Ecotypes Of Eriophorum Vaginatum L. Across A Latitudinal Gradient In Alaska”. Global Change Biology 21, no. 10. Global Change Biology (2015): 3827–3835. doi:10.1111/gcb.12991.
. “Spectral Indices For Remote Sensing Of Phytomass, Deciduous Shrubs, And Productivity In Alaskan Arctic Tundra”. International Journal Of Remote Sensing 36, no. 17. International Journal Of Remote Sensing (2015): 4344 - 4362. doi:10.1080/01431161.2015.1080878.
. “Tiller Population Dynamics Of Reciprocally Transplanted Eriophorum Vaginatum L. Ecotypes In A Changing Climate”. Population Ecology 57, no. 1. Population Ecology (2015): 117-126. doi:10.1007/s10144-014-0459-9.
. “Arctic Canopy Photosynthetic Efficiency Enhanced Under Diffuse Light, Linked To A Reduction In The Fraction Of The Canopy In Deep Shade”. New Phytologist 202, no. 4. New Phytologist (2014): 1267-1276. doi:10.1111/nph.12750.
. “Climate Change, Local Adaptatino And Arctic Plant Communities”. Research On Adaptation To Climate Change. Research On Adaptation To Climate Change, 2014. http://www.uvm.edu/~epscor/video/12_24_2014_racc_seminar_gaius_shaver.mp4.
.