disturbance

Abstract
Gaius Shaver, 2022 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2015, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c733e2d9526616a20711f3856840344a
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen and phosphorous summaries for control and fertilized plots.
Phaedra Budy, 2022 Factorial experiment to test effects of food availability and temperature on slimy sculpin (Cottus cognatus) at Toolik Field Station, 2018. 10.6073/pasta/d106662bf4506ab25f8dc44f018896fc
We used a fully factorial experiment to test effects of food availability and temperature (7.6, 12.7 and 17.4 degrees C; 50 days) on growth, consumption, respiration, and excretion of slimy sculpin (Cottus cognatus).
AON Imnavait
Abstract
George Kling, 2007 Imnavait Watershed Thaw Depth Survey Summary for 2003 to present, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/022a6e4bfee8329b5fd40b7691494e1d
Thaw depth was measured using a steel probe in the Imnavait Creek watershed, near Toolik Lake, Alaska. The thaw grid includes measurements made from the valley bottom (on both sides of the stream), up the hillslope to the hilltop (watershed boundary). The thaw grid is near Imnavait water tracks 7 and 8, and measurements have been made from the 2003 season until present. Two surveys are conducted each summer, on 2 July and on 11 August (plus or minus 1-2 days on either side of those dates).
Burn Terrestrial Data
Abstract
Michelle Mack, 2011 Burned soil surface radiocarbon values for moss macrofossils plucked from the Anaktuvuk River Fire sites. 10.6073/pasta/728ade46a3372446d391943c97141949
We used radiocarbon dating of the organic soil surface remaining post-fire to examine whether the fire burned into ancient and likely irreplaceable soil C pools. Suprisingly, it did not; all radiocarbon dates from burned soil surfaces contained bomb carbon, setting the maximum age of the burned soil surfaces at ~50 years.
Michelle Mack, 2011 Characterization of burned and unburned moist acidic tundra soils for estimating C and N loss from the 2007 Anaktuvuk River Fire, sampled in 2008.. 10.6073/pasta/9043cfa962143905d03b4ab67acc8fa7
This file contains the soil profile data for burned and unburned moist acidic tundra sites used to estimate C and N loss from the Anaktuvuk River Fire (2007). These sites were sampled in summer of 2008. Unburned sites were used to develop a method for estimating soil organic layer depth and plant biomass, and for determining the characteristics of unburned soil organic layers. In burned sites, we characterized residual organic soils and used biometric measurements of tussocks to reconstruct pre-fire soil organic layer depth.
Michelle Mack, 2011 Estimates of C and N loss from moist acidic tundra sites burned in the 2007 Anaktuvuk River Fire.. 10.6073/pasta/92512f58a584bca14ceaf04d062f8ee5
Estimated mean pre-fire C and N pools, and C and N loss from 20 sites in the Anaktuvuk River Fire (2007). These sites were sampled in summer of 2008. In each site, we characterized residual organic soils and used biometric relationships developed in unburned sites to reconstruct pre-fire soil organic layer depth, and plant and soil C and N pools. We then estimated fire-driven losses of C and N from plant and soil organic layer pools.
Gaius Shaver, Adrian V Rocha, 2011 Anaktuvuk River Burn Eddy Flux Measurements, 2009 Severe Burn Site, North Slope Alaska. 10.6073/pasta/5554a6eda8082f933709e547811b85dc
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2009 post fire energy and mass exchange at the severe burn site.
Gaius Shaver, Adrian V Rocha, 2013 Anaktuvuk River Burn Eddy Flux Measurements, 2012 Moderate Burn Site, North Slope Alaska. 10.6073/pasta/b5c015dbf57ba3b3ec3ee1d95a663fc5
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2012 post fire energy and mass exchange at the moderate burn site.
Gaius Shaver, Adrian V Rocha, 2013 Anaktuvuk River Burn Eddy Flux Measurements, 2011 Moderate Burn Site, North Slope Alaska. 10.6073/pasta/f7e7d023fbac22d83ad0c2e4ce191650
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2011 post fire energy and mass exchange at the moderate burn site.
Gaius Shaver, Adrian V Rocha, 2011 Anaktuvuk River Burn Eddy Flux Measurements, 2010 Unburned Site, North Slope Alaska. 10.6073/pasta/ff790bd426b262aa7d818ad7f0b2d2a4
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2010 post fire energy and mass exchange at the unburned site.
Gaius Shaver, Adrian V Rocha, 2011 Anaktuvuk River Burn Eddy Flux Measurements, 2009 Unburned Site, North Slope Alaska. 10.6073/pasta/aeb3845bf779ca10f13930e1d6c90105
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2009 post fire energy and mass exchange at the unburned site.
Gaius Shaver, Adrian V Rocha, 2010 Anaktuvuk River Burn Eddy Flux Measurements, 2008 Moderate Burn Site, North Slope Alaska. 10.6073/pasta/19e3802d6738c4b30cf09188a2551b10
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the first post fire growing season's energy and mass exchange at the moderate burn site.
Gaius Shaver, Adrian V Rocha, 2011 Anaktuvuk River Burn Eddy Flux Measurements, 2010 Moderate Burn Site, North Slope Alaska. 10.6073/pasta/abee3157f007a794edb3414e1280d71b
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2010 post fire energy and mass exchange at the moderate burn site.
Gaius Shaver, Adrian V Rocha, 2011 Anaktuvuk River Burn Eddy Flux Measurements, 2009 Moderate Burn Site, North Slope Alaska. 10.6073/pasta/3d912564439309bdf17bc75866179312
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2009 post fire energy and mass exchange at the moderate burn site.
Gaius Shaver, Adrian V Rocha, 2013 Anaktuvuk River Burn Eddy Flux Measurements, 2012 Unburned Site, North Slope Alaska. 10.6073/pasta/67188afe29827f8b3c0277753b2a956a
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2012 post fire energy and mass exchange at the unburned site.
Gaius Shaver, Adrian V Rocha, 2013 Anaktuvuk River Burn Eddy Flux Measurements, 2011 Unburned Site, North Slope Alaska. 10.6073/pasta/913d3843eb71f27bac3f9c97df61573e
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2011 post fire energy and mass exchange at the unburned site.
Gaius Shaver, Adrian V Rocha, 2013 Anaktuvuk River Burn Eddy Flux Measurements, 2011 Severe Burn Site, North Slope Alaska. 10.6073/pasta/d384b812a12e5cfa7fdbb4032cf1abb2
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2011 post fire energy and mass exchange at the severe burn site.
Michelle Mack, 2011 Characterization of burned and unburned moist acidic tundra sites for estimating C and N loss from the 2007 Anaktuvuk River Fire, sampled in 2008.. 10.6073/pasta/81868b65c853d5eb2052d9f1a8397d0d
Burned and unburned moist acidic tundra sites used to estimate C and N loss from the Anaktuvuk River Fire (2007). These sites were sampled in summer of 2008. Unburned sites were used to develop a method for estimating soil organic layer depth and plant biomass, and for determining the characteristics of unburned soil organic layers. In burned sites, we characterized residual organic soils and used biometric measurements of tussocks to reconstruct pre-fire soil organic layer depth.
Adrian V Rocha, Gaius Shaver, 2015 Anaktuvuk River fire scar thaw depth measurements during the 2008 to 2014 growing season. 10.6073/pasta/93121fc86e6fbcf88de4a9350609aed6
The Anaktuvuk River Fire occurred in 2007 on the North Slope of Alaska. In 2008, three eddy covariance towers were established at sites represent ing unburned tundra, moderately burned tundra, and severely burned tundra. Several times during the 2008-2014 growing seasons, thaw depth was measured at approximately 70 points near each of these towers . Data presented here are the individual measurements for each site and date.
Gaius Shaver, James A Laundre, 2023 Summer soil temperature and moisture at the Anaktuvuk River Moderately burned site from 2010 to 2013. 10.6073/pasta/6efb5c5e73e83ac58692b0e5ec23730e
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 20, 2013, no replacement sensors were installed.
Gaius Shaver, James A Laundre, 2014 Summer soil temperature and moisture at the Anaktuvuk River Unburned site from 2010 to 2013. 10.6073/pasta/13cfe1cfa528cb7fe15bd8fb672b68d3
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central datalogger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 23, 2013, no replacement sensors were installed.
Gaius Shaver, James A Laundre, 2014 Summer soil temperature and moisture at the Anaktuvuk River Severely burned site from 2010 to 2013. 10.6073/pasta/3094e3e293703580c95e17ddce51af65
Soil moisture and temperature were recorded at the Anaktuvuk River burn area during the summers from 2010 to 2013. Six sensors were deployed and measured temperature on half-hourly intervals over the summer and into the fall depending on battery function. Sensors were place in a hexagonal shape around a central data logger. Note that over time sensor depths changed due to frost heave and other environmental factors. All data contained should be treated as suspect where sensors may have been at surface. These sensors were removed August 20, 2013, no replacement sensors were installed.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the moderately burned site at Anaktuvuk River, Alaska. 10.6073/pasta/6646ac57a7397b9c8d1a2dc3c95a566c
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Adrian V Rocha, Gaius Shaver, 2015 Anaktuvuk River fire scar eriophorum vaginatum flowering during the 2008-2014 growing seasons. 10.6073/pasta/dd7955138eb963a847b861242390a48c
The Anaktuvuk River Fire occurred in 2007 on the North Slope of Alaska. In 2008, three eddy covariance towers were established at sites representing unburned tundra, moderately burned tundra, and severely burned tundra. Eriophorum vaginatum flowers were counted from annual photographs of each site during peak flowering season (6/17-7/20).
Gaius Shaver, Adrian V Rocha, 2010 Anaktuvuk River Burn Eddy Flux Measurements, 2008 Severe Burn Site, North Slope Alaska. 10.6073/pasta/724bd68e01ee9a59b05cdee5cfa14bbd
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the first post fire growing season's energy and mass exchange at the severe burn site.
Adrian V Rocha, Gaius Shaver, 2013 Anaktuvuk River Burn Eddy Flux Measurements, 2012 Severe Burn Site, North Slope Alaska. 10.6073/pasta/ed412a2a1940af95ab4611212200a5c5
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2012 post fire energy and mass exchange at the severe burn site.
Adrian V Rocha, Gaius Shaver, 2015 Anaktuvuk River fire scar canopy reflectance spectra from the 2008-2014 growing seasons, North Slope Alaska.. 10.6073/pasta/ce1f38604169aa052e288f9371a82e92
The Anaktuvuk River Fire occurred in 2007 on the North Slope of Alaska. In 2008, three eddy covariance towers were established at sites represent ing unburned tundra, moderately burned tundra, and severely burned tundra. During the 2008-2014 growing seasons, canopy vegetation within the footprint of each of these towers was scanned with a handheld spectrophotometer several times throughout the growing season. Average reflectance spectra per site and collection day are presented here.
Adrian V Rocha, Gaius Shaver, 2011 Anaktuvuk River Burn Eddy Flux Measurements, 2010 Severe Burn Site, North Slope Alaska. 10.6073/pasta/2330a47db633130f0972bc134e714066
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2010 post fire energy and mass exchange at the severe burn site.
Adrian V Rocha, Gaius Shaver, 2010 Anaktuvuk River Burn Eddy Flux Measurements, 2008 Unburned Site, North Slope Alaska.. 10.6073/pasta/48f728d2fe75541c8f4f6827ce8dc039
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the first post fire growing season's energy and mass exchange at the unburned site.
Adrian V Rocha, 2020 Soil nutrient availability from the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016 growing season. 10.6073/pasta/e01c5678f825642da7d69260614bdcc2
This file contains plant-available
Adrian V Rocha, 2020 Soil nutrient availability from the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2019 growing season. 10.6073/pasta/76b71bb30f3a2c809eee79ac2023f652
This file contains plant-available
Adrian V Rocha, 2020 Anaktuvuk River, Alaska, USA tussock tundra flowering in response to fire severity, 2008-2015. 10.6073/pasta/54a41c062a42c0538e2a0aa6dd347bdb
Eriophorum vaginatum flower counts from annual photographs at the severe, moderate, and unburned Anaktuvuk River, Alaska, USA flux tower sites during
Adrian V Rocha, 2020 Leaf area index (LAI) recorded from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/06559231aa04fd7fecd661f107985c8f
This file contains leaf area index (LAI) measurements from an  nitrogen (N), phosphorus (P)
Adrian V Rocha, 2020 Point-frame measurments from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/c28d78e8a3c11b52b38cf1f1c01dc671
This file contains point-frame measurements from a
Adrian V Rocha, 2020 Anaktuvuk River Burn Eddy Flux Measurements, Unburned Site, North Slope Alaska, 2013-2019 . 10.6073/pasta/005b8212ff751d8ca30be3350c89bae2
We deployed three eddy covariance towers along a burn severity gradient (i.e.
Adrian V Rocha, 2020 Anaktuvuk River Burn Eddy Flux Measurements, Moderate Site, North Slope Alaska, 2013-2019 . 10.6073/pasta/d9ae45785b04e4083f2429b88568f412
We deployed three eddy covariance towers along a burn severity gradient (i.e.
Adrian V Rocha, 2020 Anaktuvuk River Burn Eddy Flux Measurements, Severe Site, North Slope Alaska, 2013-2019 . 10.6073/pasta/9525403adb8be60bc415f2130f3bda8e
We deployed three eddy covariance towers along a burn severity gradient (i.e.
Adrian V Rocha, 2021 Tussock height and diameter in moist acidic tussock tundra at the site of the 2007 Anaktuvuk River fire scar, and nearby unburned tundra measured in 2016. 10.6073/pasta/1dccd3fdb3aa693f9c2b69a24f8306ed
This dataset consists of Eriophorum vaginatum tussock height and width (diameter) measurements, and was used to evaluate differences in physical strucutre of previously burned tundra (2007 Anaktuvuk River fire) and nearby unburned tundra. At each site, all tussocks that intersected four 100 meter transects were measured from soil surface to tussock top in four cardinal directions, and diameter was measured in two directions.
Adrian V Rocha, 2021 Tussock (Eriophorum vaginatum) density, mortality, and rodent-herbivore activity in moist acidic tussock tundra at the site of the 2007 Anaktuvuk River fire and nearby unburned tundra, measured in 2019. 10.6073/pasta/d25053a5e3d579321688f20558e96753
This dataset consists of tussock density, mortality rates and causes, and an assesment of rodent-herbivore activity levels in previously burned (2007 Anaktuvuk River fire) and unburned tussock tundra. Eriophourm vaginatum tussocks were counted every meter within a 1 square meter quadrat along three transects. Cause of tussock mortality, as well as level of rodent herbivory was assessed for each tussock, and rodent herbivore activity was assessed for each quadrat.
Adrian V Rocha, 2021 Eriophorum vaginatum rhizome nitrogen content from the 2007 Anaktuvuk River fire scar measured in 2019.. 10.6073/pasta/2a1668c035b2b3f973e6d60b2084d12f
This file contains Eriophorum vaginatum rhizome biomass from a 2017 biomass pluck of previously burned tundra (2007 Anaktuvuk River Fire) and nearby unburned tundra. Rhizome biomass from the pluck was combined with rhizome percent nitrogen estimates (2.47% at the Anaktuvuk River Fire, and 1.05% at the nearby unburned site) to estimate grams of nitrogen per meter squared, to evaluate differences in winter forage quality for the rodent herbivore, Microtus oeconomus. Percent nitrogen estimates were derived from pooled rhizome samples collected from the two sites in late 2018.
Changing Seasonality and Arctic Stream Networks
Abstract
Michael Gooseff, 2013 Peat Inlet well #1 depth in summer 2011. 10.6073/pasta/af320587de86dc41982e3d3db809ea8a
Data on sensor depth gathered from PIn Well 1 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Peat Inlet well #2 depth in summer 2011. 10.6073/pasta/6bf2dbe830671802c5ecb3c495f1f058
Data on sensor depth gathered from PIn Well 2 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 I8 Inlet well #5 depth in summer 2011. 10.6073/pasta/e997565ef86b7feb70be15ee07ad0294
Data on sensor depth gathered from I8In Well 5 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/b4a534851f549a690ef2aff85de08d9f
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2010 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/5799d44b175ed4731ab2f95517b5e00c
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2011 season.
Michael Gooseff, 2013 I8 Inlet well #7 depth in summer 2011. 10.6073/pasta/1085153473ea8df13451b1c0c7fe7bc5
Data on sensor depth gathered from I8In Well 7 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Peat Inlet well #5 depth in summer 2011. 10.6073/pasta/9155d4632738c1328954984fcdd863fe
Data on sensor depth gathered from I8In Well 5 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/4c5b5e0ebb6979e2ac3b72462c8dc6b3
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2010 season.
Michael Gooseff, 2013 Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/cbe4b564a3fa2e6108a5f5b65c2f1950
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2011 season.
Michael Gooseff, 2013 daily average discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/4c1790b726df3953cd58f9f15c691ee3
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2011 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/7718058cc9f7419cc1b84a0a3d3b9421
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2010 season.
Michael Gooseff, 2013 daily average discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/1732d58558e43c1f6c11fe2469989988
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2011 season.
Michael Gooseff, 2013 I8 Inlet well #1 depth in summer 2011. 10.6073/pasta/3ea5e43f0da7adb5180d2db46128c3ff
Data on sensor depth gathered from I8In Well 1 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2012. 10.6073/pasta/0d632902d48b411c7f9c92a5231b50fd
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2012 season.
Michael Gooseff, 2013 I8 Inlet well #4 depth in summer 2011. 10.6073/pasta/b141523b2c8c9fb3bcf70252a0b0dcf9
Data on sensor depth gathered from I8In Well 4 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/2fa324c9b2656bae95f9a7aea25b8e25
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2010 season.
Michael Gooseff, 2013 I8 Inlet well #2 depth in summer 2011. 10.6073/pasta/265e39d591f41f6ec0abfcbf3404e64a
Data on sensor depth gathered from I8In Well 2 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/bcf66401d57ed736fd610682f49460fb
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2011 season.
Michael Gooseff, 2013 Discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/6f297c25900b6b34cb80a11e1ce3b7de
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2010 season.
Michael Gooseff, 2013 Peat Inlet well #4 depth in summer 2011. 10.6073/pasta/eecce1502fa9210fe081d060b9b26775
Data on sensor depth gathered from PIn Well 4 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 I8 Inlet well #8 depth in summer 2011. 10.6073/pasta/bf9eb0959d56cc203c97ea52946aad7a
Data on sensor depth gathered from I8In Well 8 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 I8 Inlet well #6 depth in summer 2011. 10.6073/pasta/b21d76c698fb3143f9006863b1706c05
Data on sensor depth gathered from I8In Well 6 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Peat Inlet well #8 depth in summer 2011. 10.6073/pasta/4cee4ccf5d7edabd50a92fbe863536ca
Data on sensor depth gathered from PIn Well 8 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Peat Inlet well #7 depth in summer 2011. 10.6073/pasta/a6da9e77bd4944730f3b8fc38388bec9
Data on sensor depth gathered from Pin Well 7 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Peat Inlet well #6 depth in summer 2011. 10.6073/pasta/11fda032461f0f112b976e1d8830fc52
Data on sensor depth gathered from PIn Well 6 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 Daily average discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/57e893a765dd6f809ab44f83f4ef9455
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2011 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2012. 10.6073/pasta/60754311f473af4d3540a0fa3d70d724
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2012 season.
Michael Gooseff, 2013 discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/063253c74d2d7e2f54a8981c9b2d68a8
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2010 season.
Michael Gooseff, 2013 Peat Inlet well #3 depth in summer 2011. 10.6073/pasta/f0c513552d45b605b9049df9d0ce4dda
Data on sensor depth gathered from PIn Well 3 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
Michael Gooseff, 2013 I8 Inlet well #3 depth in summer 2011. 10.6073/pasta/51ab7dca36232d5f843393ebdcdd7c27
Data on sensor depth gathered from I8In Well 3 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season.
William "Breck" Bowden, 2013 Whole stream metabolism (I8 Inlet, I8 Outlet; Peat Inlet; Kuparuk): Changing seasonality of Arctic stream systems project. 10.6073/pasta/b2f42a2744d8526d06c522f74c273824
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. Whole Stream Metabolism was calculated using dissolved oxygen, discharge, stage, and temperature measured by sounds deployed in the field.
Ecotypes Transplant Garden
Abstract
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Eriophorum vaginatum leaf length 2015-2017 from 2014 common gardens established at Toolik Lake, Coldfoot, and Sagwon - Alaska. 10.6073/pasta/f755cc84f4d410f3e7b0c813ff1155a2
Data on Eriophorum vaginatum leaf length collected from common gardens established at Toolik Lake, Coldfoot, and Sagwon in 2014 with tussocks from  Coldfoot, Toolik Lake, and Sagwon. Data collected during the growing seasons of 2015, 2016, and 2017
Model data
Abstract
Edward Rastetter, 2020 Model output, drivers and parameters for Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes . 10.6073/pasta/24624a295f418f36ae90c99ab49bca07
Files used to generate the data for figures in:
Rastetter, EB, Kling, GW, Shaver, GR, Crump, BC, Gough, L. Ecosystem Recovery from Disturbance Is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance between Vegetation and Soil-Microbial Processes. Ecosystems (2020). https://doi.org/10.1007/s10021-020-00542-3.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (With a Long-term Trend) on Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/83775003d8ef8978bf43d5c801f2a9a9
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Weather measurements for Toolik Lake, Alaska, 1989-2019. 10.6073/pasta/c37707dcee5c9bc55b3fc7599e784010
Weather measurements from the Toolk Main weather station, 1989-2019. This data was originally downloaded from the Toolik Field Station Environmental Data Center March 8, 2021.

This climate record was used in Rastetter et al., Science, submitted.

The latest climate data is available at http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php
Photochemistry Bacteria
Abstract
George Kling, Rose Cory, 2014 Bacterial production and respiration data set for NSF Arctic Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/21080bc91c6192a04aeeaacaad7d444d
Data file describing the bacterial production and bacterial respiration of water samples collected at various sites near Toolik Lake on the North Slope of Alaska. Sample site descriptors include site, date, time, depth, and category representing severity of thermokarst disturbance. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
Streams Insects
Abstract
Ann Hershey, 2004 Total numbers and species of insects taken from rock scrubbings during the summer of 1984-1988, 1993-1994, 1996-1998, in the Kuparuk River experimental reach near Toolik Field Station, North Slope Alaska... 10.6073/pasta/8d387215e6c252119e628ac4e5acdbed
A rock-scrubbing technique was used to collect bottom samples at several different stations with three replicates at each station in the Kuparuk River. The stations are measured relative to the 1984 phosphorus dripper. Only July sampling dates are included in this file (ACG). The samples were preserved in ethanol then picked, sorted, counted, and measured in Duluth using a NIKON MICRO-PLAN II digitizing pad.
Alex Huryn, 2004 Total numbers per square meter and taxa of insects taken from the Kuparuk River during the summer of 2001, Arctic LTER 2001.. 10.6073/pasta/98b14e18d529573f7bca9e05dc0ad76a
A Surber sampler (25 X 25 cm frame fitted with a 243 um mesh net) was used to sample invertebrates at several different stations. Two replicates were taken from each station. The same sampling procedure was used for all dates. The stations were measured relative to the site of the dripper ("-" = upstream of the dripper). Samples were preserved in 4% formaldehyde and transported to Orono, Maine, where invertebrates were removed by hand under 15X magnification and then identified and counted. All values are converted to individuals per square meter.
Alex Huryn, 2004 Total numbers per square meter and taxa of insects taken during a survey of headwater streams in the Toolik Lake region during the summer of 2001, Arctic LTER 2001.. 10.6073/pasta/7a6829a22653bc7f164576721272cb35
A Surber sampler (25 X 25 cm frame fitted with a 243 um mesh net) was used to sample invertebrates on a single date at each site. Five replicates were taken from at least two riffles at each site. Samples were preserved in 4% formaldehyde and transported to Orono, Maine, where invertebrates were removed by hand under 15X magnification and then identified and counted. All values are the mean of five replicates and have been converted to individuals per square meter.
Alex Huryn, 2022 Invertebrate Community Asemblage from the Arctic LTER Upper Kuparuk River Reference (2001-2012) and Fertilized Reach (2002-2016), Toolik Field Station, Alaska. 10.6073/pasta/7f281726bfa59df3928b774c5baa6cb3
Surber sampler (25 X 25 cm frame fitted with a 243 um mesh net) was used to sample invertebrates at on the Kuparuk River in Reference (2001-2012) and Fertilized Reach (2002-2016) reach.
Terrestrial Biomass
Abstract
Kevin Griffin, Natalie Boelman, 2020 Vegetation species abundance via point frame from Arctic LTER dry heath tundra, Toolik Field Station, Alaska, 2017. 10.6073/pasta/4b75019636e6f95760fcd49de4c99579
Vegetation (species) abundances were measured from LTER heath tundra herbivore exclosures using the point frame method. This file contains the number of pin hits per species for each subplot.
Weather Moist Acidic Tussock (MAT)
Abstract
Gaius Shaver, 2019 Hourly weather data from the Arctic LTER Moist Acidic Tussock Experimental plots from 2011 to present, Toolik Filed Station, North Slope, Alaska.. 10.6073/pasta/0bdf6cd129910f7b43a538777c221367
Hourly weather data from the LTER Moist Acidic Tussock Experimental plots. The station was installed in 1990 in block 2 of the Toolik LTER experimental moist acidic tussock plots. The plots are located on a hillside near Toolik Lake (68 38' N, 149 36'W). Global solar radiation, photosynthetic active radiation, unfrozen precipitation, air temperature, relative humidity, wind speed, and wind direction are measured at 3 meters. Additional sensors in greenhouses and shade houses plots measure air temperature, relative humidity and photosynthetic active radiation during the growing season.
Gaius Shaver, 2019 Soil and canopy temperature data from the Arctic LTER Moist Acidic Tussock Experimental plots (MAT89) from 2012 to 2018, Toolik Field Station, North Slope, Alaska. 10.6073/pasta/5394ebed0c558da5882a456d7f4da9f3
Soil and canopy temperature data from the Arctic LTER 1989 Moist Acidic Tussock Experimental plots(MAT89). The station was established in 1990 in block 2 of a 4 block random block design. The plots are located on a hillside near Toolik Lake, Alaska (68 38' N, 149 36'W).  Treatments include - control (CT), greenhouse (GH), greenhouse plus nitrogen and phosphorus (GHNP) shade (SH), shade plus nitrogen and phosphorus (SHNP) and nitrogen and phosphorus (NP). Profiles include above and within canopy, 10, 20 and 40 centimeter soil depths.  Not all treatments have a complete profile.
Welker IPY_Snow_shrub
Abstract
Jeff Welker, Paddy Sullivan, 2011 Welker IPY snow shrub 2007 flux data, Toolik, Alaska.. 10.6073/pasta/288210c11a86847870d9c96577ad0839
This is a study of how different snow regimes effect CO2 exchange in tussock tundra and whether there are shifts in ecosystem C cycling when facets of "drift" effects are isolated. The study is part of the IPY program and is aimed at measuring the state of Arctic tundra.
Jeff Welker, Paddy Sullivan, 2011 Welker IPY snow shrub 2008 flux data, Toolik, Alaska.. 10.6073/pasta/871da73183899995b2f5e9b4f94696d9
This is a study of how different snow regimes effect CO2 exchange in tussock tundra and whether there are shifts in ecosystem C cycling when facets of "drift" effects are isolated. The study is part of the IPY program and is aimed at measuring the state of Arctic tundra.
Ecotypes Disturbance experiments
Abstract
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Ion exchange membrane measure of nutrient availability of the 2015 experimental burn at Toolik Lake Field Station, Alaska 2016 . 10.6073/pasta/ca84cec21de79fd6364d7781374f84eb
An experimental burn conducted in the summer of 2015 to provide sites for an experiment whether seeds of Eriophorum vaginatum from different ecotypes could establish in recently burned areas.  It consisted of ten 2 meter X 2 meter plots along with a similar number of control plots. There was little seedling establishment but other data were collected on the plots.  Ion exchange membranes were used to measure nutrient availability over two time periods:  Early season (June) and mid season (July).
Thomas Parker, Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Soil respiration from a mycorrhizal and root exclusion experiment at Toolik Lake Field Station and Anaktuvuk River Burn, Alaska in 2016. 10.6073/pasta/40c946f076355aa2523ee4847f745b51
Organic soil from either the Anaktuvik severe burn or Toolik Lake were collected to test of effect of removal of mycorrhizae on decompositon of tundra at Toolik Lake and the Anaktuvuk Burn IN 2016.
A licor 6400 with 6400-09 soil respiration chamber was used to measure soil respiration (efflux) from the cores on a weekly basis.
Ned Fetcher, Jianwu Tang, Michael L Moody, Thomas Parker, 2019 Effects of shading on tundra vegetation senescence at Toolik Lake, Coldfoot, Sagwon - Alaska 2016 . 10.6073/pasta/52dcd21509c4d8638ccfb5148b2ac119
Data on the effects of shading tundra vegetation from the sun when it is low in on the horizon in the north. If light quality was altered through shading, phenology might be affected. Senescence (color change) was measured for the common tundra species.
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Effects of 2015 experimental burn on Eriophorum vaginatum at Toolik Lake Field Station, Alaska 2016. 10.6073/pasta/99e3e2d2aa874e56fb6d63551134662e
This was an experimental burn conducted in the summer of 2015 to provide sites for an experiment to see whether seeds of Eriophorum vaginatum from different ecotypes could establish in recently burned areas.  It consisted of ten 2 meter X 2 meter plots along with a similar number of control plots. There was little seedling establishment but other data have been collected on the plots.
Photochemistry Chemistry
Abstract
George Kling, Rose Cory, 2014 Apparent quantum yield data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/aa2d0ed4ddef6e76c3ef8d6c12460607
Data file describing the apparent quantum yield of photo-oxidation, photo-mineralization, and photo-stimulated microbial respiration of dissolved organic carbon in water samples collected at various sites near Toolik Lake on the North Slope of Alaska. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
George Kling, Rose Cory, 2014 Photochemistry data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/2f9433d6a608e82e1dd4fa23175c1f59
Data file containing optical characterization of colored dissolved organic matter (CDOM). Data include CDOM absorption coefficients, water column light attenuation coefficients, specific UV light absorbance (SUVA254), spectral slope ratio, and fluorescence index from waters near Toolik Lake on the North Slope of Alaska. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
Terrestrial Plant Communities and Plant Species List
Abstract
Laura Gough, 2019 Relative percent cover of plant species for years 2013 2014 2016 2017 in LTER dry heath tundra experimental plots established in 1989, Arctic LTER Toolik, Field Station Alaska. 10.6073/pasta/25d3f0db55e9df6f99fc3e9596433090
Relative percent cover of plant species was measured in Arctic Long-Term Ecological Research (ARC-LTER) Dry Heath experimental plots. Treatments include Nitrogen Phosphorus (NP), and Control (CT), Nitrogen Phosphorus Unfenced (NFNP), Nitrogen Phosphorus Small Fenced (SFNP), Nitrogen Phosphorus Large Fenced (LFNP), Control (CT), Control Small Fenced (CTSF), and Control Large Fenced (LFCT).
Laura Gough, 2019 Relative percent cover of plant species for years 2012-2017 in the Arctic Long-term Ecological Research (ARC-LTER) 1989 moist acidic tundra (MAT89) experimental plots, Toolik Field Station, Alaska. . 10.6073/pasta/f31def760db3f8e6cfee5fee07cc693e
Relative percent cover of plant species was measured in ARC-LTER 1989 moist acidic tundra experimental plots. Treatments include Control (CT), Nitrogen Phosphorus (NP), Nitrogen (N), Phosphorus (P), and Greenhouse Control (GHCT). In 1996 on unassigned plots, an experiment that manipulate herbivory presence and nutrients was started. Treatments include Control Unfenced (NFCT), Nitrogen Phosphorus Unfenced (NFNP), and Small Fenced Control (CTSF). Not all treatments were measured each year.
Thermokarst MEL
Abstract
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation F - increased N deposition. 10.6073/pasta/04a2ff938b67d9d1dd4e648d370856b6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to N fertilization.. 10.6073/pasta/a1464ee098b4693f2aea4078b3e5a35c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra control simulation. 10.6073/pasta/46323340d5b33913e9399e750cb3600b
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to NP fertilization.. 10.6073/pasta/f7bb757427c523e546489a2f4cf957d4
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation E - reduced Phase I soil organic matter. 10.6073/pasta/5534808e2359f56db12593fde6bb42d0
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event under control conditions.. 10.6073/pasta/8adc3b89c8c73fe1870ad82536575f99
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation A - increased Phase II soil organic matter. 10.6073/pasta/83564c3cce28be248d93b384d58ffda1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to P fertilization.. 10.6073/pasta/7d253bd599910b0a6497c83d74369f32
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation I - doubled Phase I decomposition. 10.6073/pasta/3171b861f8c2009bdd2d1acdf5738179
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation J - doubled Phase II decomposition. 10.6073/pasta/56b00b38bd5dd8c1dc2b1b8b0b1255a8
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation H - increased N and P deposition. 10.6073/pasta/4f6210c24640c0070a871ca95cd53b9f
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra shade house simulation. 10.6073/pasta/8cf3a98c0e86a5b7e17fe9b3ada34199
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra phosphorus fertilization simulation. 10.6073/pasta/055aebf21d403577c188049995c75ca6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation B - increased Phase I soil organic matter. 10.6073/pasta/e75ab68cb99fd5094c4ebcb660986e61
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra fertilized greenhouse simulation. 10.6073/pasta/e25f1d4053e23f89a1c0e5e93c967553
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event. 10.6073/pasta/ba85d7312407e90a46fac604467f3ac7
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen and phosphorus fertilization simulation. 10.6073/pasta/fa66c6160400843ee8936df23b91881c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation D - reduced Phase I and Phase II soil organic matter. 10.6073/pasta/9f471a11c32968f2aebcc27d292a3694
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen fertilized simulation. 10.6073/pasta/be12688c444a9546f2d5fae9182f78f1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event: saturating nutrients.. 10.6073/pasta/07cba61c48ce8b31830daac1986d1c21
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation C - increased Phase I and Phase II soil organic matter. 10.6073/pasta/b3eb66158a1b1d77148ff63d145e8d90
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation G - increased P deposition. 10.6073/pasta/22cdf3a3353448cb0f819b5121a5c014
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra greenhouse simulation. 10.6073/pasta/97587f197c22b52ab9e637ffca4fceeb
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Undisturbed tussock tundra. 10.6073/pasta/f83d33ff75b3ab2c690564d7c597b364
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Weather Moist Non-Acidic Tussock (MNT)
Abstract
Sarah Hobbie, James A Laundre, 2021 Hourly temperature and humidity data from the LTER Moist Non-acidic Tussock Experimental plots (MNT).. 10.6073/pasta/a48892da5bc9eab27b18d2364dea6998
Hourly data from the Toolik Moist Non-acidic Tussock Experimental plots (MNT). In 1999 a Campbell CR10x data logger was installed in block 2 of the experimental plots. The plots are located on a hillside near Toolik Lake (68 38' N, 149 36'W). Sensors were placed in control and greenhouse sites. Soil temperature profiles are reported in another file (1999-present_MNTsoil).
Weather Toolik Field Station Met
Abstract
James A Laundre, Gaius Shaver, 2022 A multi-year DAILY weather file for the Toolik Field Station at Toolik Lake, Alaska starting 1988 to present.. 10.6073/pasta/3b74363b40f858a2dcbe1b83790aee77
A multi-year DAILY weather file for the Arctic Tundra Long-Term Ecological Research (LTER) site at Toolik Lake, AK. Included are daily averages and/or maximums and minimums of air, wind speed, soil temperature, and sum of global radiation and precipitation.

In 2008 Toolik Field Station took over maintenance of the main weather station. See http://toolik.alaska.edu/edc/index.php for current weather data. In addition to the main weather station the Arctic LTER maintains several stations that collect data on the experimental plots.
Thermokarst Streams
Abstract
William "Breck" Bowden, 2014 ARCSS/TK stream dissolved organic carbon biodegradability (2011).. 10.6073/pasta/2057860f44b75e4291072a996f2b99b1
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. The objective of this data set was to measure the quantity and biodegradability of DOC from headwater streams and rivers across three geographic regions and across four natural ‘treatments’ (reference; thermokarst-; burned-, and thermokarst + burned-impacted streams) to evaluate which factors most strongly influence DOC quantity and biodegradablity at a watershed scale.
William "Breck" Bowden, 2014 ARCSSTK benthic nutrients and chloropyll-a. 10.6073/pasta/5905edbd9bca76c1b25542d9a661d1a2
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. Specifically, the ARCSSTK goal Streams goal was to quantify the relative influences of thermokarst inputs on the biogeochemical structure and function of receiving streams. Throughout the project, samples were collected from Benthic Rock Scrubs and measured for cholorophyll-a and particulate carbon (C), nitrogen (N) and phosphorus (P).
William "Breck" Bowden, 2014 ARCSSTK WSM. 10.6073/pasta/11eb4e1ce9dfb4413cb869e5fc11472f
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. Specifically, the ARCSSTK goal Streams goal was to quantify the relative influences of thermokarst inputs on the biogeochemical structure and function of receiving streams. Whole Stream Metabolism was calculated using dissolved oxygen, discharge, stage, and temperature measured by sondes deployed in the field.
Weather Wet Sedge
Abstract
James A Laundre, 2022 Hourly weather data from the Arctic LTER Wet Sedge Inlet Experimental plots from 1994 to present, Toolik Field Station, North Slope, Alaska.. 10.6073/pasta/87bb699469101659867f951b69219c37
Hourly weather data from the Arctic Tundra LTER wet sedge experimental site at Toolik Lake. The following parameters are measured every minute and averaged every hour: control plot air temperature and relative humidity at 3 meters and greenhouse plot air temperature and relative humidity at 1 meters (inside the greenhouse).
James A Laundre, Gaius Shaver, 2022 Soil temperature data collected from the Arctic LTER wet sedge experimental site Toolik Field Station North Slope, Alaska from 1994 to 2020. 10.6073/pasta/b9042efc729ffb531bdb3974cb6d866c
Soil temperature data collected every 4 hours from a wet sedge site at the Arctic Tundra LTER site at Toolik Lake. Temperatures are measured every 3 minutes and averaged every 4 hours in control, nitrogen alone, phosphorus alone, nitrogen and phosphorus, and greenhouse experimental plots soil temperatures.
Landscape Interactions Watershed Thaw Survey
Abstract
George Kling, 2007 Tussock watershed thaw depth survey summary for 1990 to present, Arctic Long-Term Ecological Research (LTER), Toolik Research Station, Alaska. . 10.6073/pasta/5ec809b760dd8cbc9e979941e29f70cc
Thaw depth was measured since 1990 using a steel probe in the Tussock watershed just south of Toolik Lake, Alaska, on a gentle slope dominated by moist, non-acidic tussock tundra. At least two surveys are conducted each summer, on 2 July and on 11 August (plus or minus 1 day).
Thermokarst Soil
Abstract
Benjamin Crosby, 2013 Water-level and subsurface water temperature at sensor from the Toolik River Thermokarst, 2010-2013. 10.6073/pasta/f76e4598a1b0bd7d269cc1596a07ee81
Data were collected to investigate if formation of gully thermokarst (TK) results in lowering of the water table and more rapid evacuation of water from above the frost table. Data were collected from 24 shallow screened wells. 2 replicate rows of 4 wells were located at: (a) a hillslope (HS) ~120m away from the gully TK, (b) perpendicular to the gully TK (TK) and (c) perpendicular to an unimpacted water track (WT) upstream of the gully TK. Note that water levels are the distance below the ground surface and may have organic/peat layers of different thicknesses.
Michelle Mack, Edward Schuur, 2013 Surface soil characteristics for six thermokarst chronosequences near Toolik Field Station and Noatak National Preserve, Alaska. 10.6073/pasta/ad0c79140211e1f4db2509fded5653b8
Surface organic and mineral soil layers were sampled in retrogressive thaw slump disturbance scars and nearby undisturbed tundra to estmate the influence of this thermo-erosional--thermokarst--disturbance type on soil carbon (C) and nitrogen (N) pools. Within six independent sites, we identified multiple thaw slump scars and determined time after disturbance for each scar by (1) aging the population of tall deciduous shrubs rooted in the mineral soil and (2) by dating the basal layer of the re-accumulating soil organic matter.
Michael Gooseff, Sarah Godsey, 2012 Meteorological data near thermokarst sites around Toolik Lake Field Station, Summer 2009-Summer 2012. 10.6073/pasta/5089ebdcad8fefee800fe3aa60b2437b
GroMeteorological parameters were measured hourly adjacent to thermokarst features in the region around Toolik Field Station. Pressure, rainfall, wind speed and direction, solar radiation, air temperature and relative humidity were all measured at 1-3m above the ground surface with an Onset U30 weather station connected to all sensors.
Michael Gooseff, Sarah Godsey, 2012 Ground temperature at and near NE 14 thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012. 10.6073/pasta/84046582477f7d660eaaf6526dc0ec46
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. NE14_TS02dot02_temp is located in the old NE14 thermokarst, upslope.
Michael Gooseff, Sarah Godsey, 2012 Ground temperature at and near Toolik River thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012. 10.6073/pasta/00c2958f88d1ccad92755882e54cdef6
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. TRTK_GT01dot05_temp is located outside the TRTK thermokarst, midslope.
Michael Gooseff, Sarah Godsey, 2012 Ground temperature at and near I-Minus-2 thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012. 10.6073/pasta/e46aa3731f4da34010d72745ba60a448
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. IM2_GT01dot06_temp is located inside of the I-Minus-2 Gulley thermokarst, downslope.
Torre Jorgenson, 2013 Permafrost soil database with information on site, topography, geomorphology, hydrology, soil stratigraphy, soil carbon, ground ice isotopes, and vegetation at thermokarst features near Toolik and Noatak River, 2009-2013. 10.6073/pasta/6294610ce5738eb9c7e5d1ce13b54017
This database contains soil and permafrost stratigraphy associated with thermokarst features near Toolik Lake and the Noatak River collected by Torre Jorgenson and Andrew Balser during summers 2009-2011. The Access Database has main data tables (tbl_) for site (environmental), soil stratigraphy, soil physical data, soil chemical data, soil isotopes (ground ice), soil radiocarbon dates, topography and bathymetry, and vegetation cover.
Modeling Data
Abstract
Yueyang Jiang, 2016 Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.. 10.6073/pasta/3c28308d774de3b01a416bd4cb597067
A study investigating the mechanisms that control long-term response of tussock tundra to fire and to increases in air temperature, CO2, nitrogen deposition and phosphorus weathering. The MBL MEL was used to simulate the recovery of three types of tussock tundra, unburned, moderately burned, and severely burned in response to changes in climate and nutrient additions. The simulations indicate that the recovery of nutrients lost during wildfire is difficult under a warming climate because warming increases nutrient cycles and subsequently leaching within the ecosystem.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Steady state carbon, nitrogen, phosphorus, and water budgets for twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/b737b5f0855aa7afeda68764e77aec2a
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Ecosystem responses to changes in climate and carbon dioxide in twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/7ca56dfbe6c9bedf5126e9ff7e66f28d
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset B. 10.6073/pasta/5f95c98e963409a447322b205bbc7f62
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset A. 10.6073/pasta/e8f2890db0a7a64a76580cadb47b472c
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Streams Temperature Discharge
Abstract
William "Breck" Bowden, 2020 Kuparuk River stream temperature and discharge measured each summer, Dalton Road crossing, Arctic LTER Toolik Field Staion, Alaska 1978-2019. 10.6073/pasta/b407edbe788d9be27662009e1be8331b
Stream temperature and discharge measured each summer for several streams in the Toolik area. In many years, temperature and stream height were recorded manually each day. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data was maintained by Doug Kane and the Water and Environmental Research Center at UAF through 2017 (http://ine.uaf.edu/werc/projects/NorthSlope/upper_kuparuk/upper_kuparuk....).
William "Breck" Bowden, 2020 Stream temperature and discharge measured each summer for Oksrukuyik Creek at Dalton Road crossing, Arctic LTER, Toolik Field Station, Alaska, 1989-2019. 10.6073/pasta/93999a64cc4650828f633e2ab5b237fa
Oksrukuyik Creek stage height and calculated discharge for the summer of 1989 to present. Stream temperature and discharge measured each summer for several streams in the Toolik area. Stream height is converted into stream discharge based on a rating curve calculated from manual discharge measurements throughout the season. The principal investigator in charge of the temperature and discharge measurements is Dr. Breck Bowden.
Note: This file combines the previous individual yearly files.
Terrestrial Soil Properties
Abstract
Gaius Shaver, 2022 Late season thaw depth measured in the Arctic Long Term Ecological Research (ARC LTER) moist acidic tussock experimental plots at Toolik Field station, Alaska Arctic 1993 to 2021. 10.6073/pasta/e24f9ed96718c7a6d020c1be6ae5853f
Late season thaw depth was measured in the Arctic Long Term Ecological Research (ARC LTER) experimental plots (1981 Moist Acidic Tussock, 1989 Moist Acidic Tussock, 2006 Low Fertilization Moist Acidic Tussock, 1989 Moist Non-acidic Tussock, 1989 Moist Non-acidic Non-tussock and 1989 Wet Sedge tundra) at Toolik Lake, Alaska using a steel thaw probe. Note: for 2017-2018 only 1989 Moist Non-Acidic Tussock Tundra and 2006 Low fertilization Moist Acidic Tussock Tundra were measured. For other sites it has become difficult to distinguish rocks from frozen soil with a steel thaw probe.
Weather
Abstract
Gaius Shaver, James A Laundre, 2021 Soil temperatures and moisture for Arctic Long Term Experimental Research (ARC LTER) heath experimental plots, Toolik Field Station, North Slope Alaska for 2001-2018. . 10.6073/pasta/5bec91673a0bd177777381b490247241
Soil temperatures at 2 depths, 5 and 10 cm, canopy temperatures and soil moisture at 10 cm were measured in a heath tundra Arctic Long Term Experimental Research (ARC-LTER) site at Toolik Lake Field Station, North slope, Alaska. Air temperature and relative humidity and global radiation were also measured but are presented in another dataset. Only control and nutrient addition (nitrogen plus phosphorus ) treatments plots were measured .
Photochemistry
Abstract
George Kling, Rose Cory, 2014 Biogeochemistry data set for NSF Arctic Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/22a3a3fc2dc74b7aabe8a10ab9061cf0
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake on the North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, and category (level of thermokarst disturbance). Physical measures collected in the field include temperature, electrical conductivity, and pH.
Thermokarst
Abstract
William "Breck" Bowden, 2014 Physical site characteristics for the ARCSS/TK stream dissolved organic carbon biodegradability (2011) data set.. 10.6073/pasta/251cd2feee2adcab246208e77abd5985
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. The objective of this data set was to measure the quantity and biodegradability of DOC from headwater streams and rivers across three geographic regions and across four natural ‘treatments’ (reference; thermokarst-; burned-, and thermokarst + burned-impacted streams) to evaluate which factors most strongly influence DOC quantity and biodegradablity at a watershed scale. This table provides physical site characteristics for the locations sampled for stream water biodegradability.
CSV
Subscribe to disturbance