Bibliography
“Model Responses To Co 2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32, no. 1. Ecological Applications (2022). doi:10.1002/eap.v32.110.1002/eap.2478.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Small Herbivores With Big Impacts: Tundra Voles ( Microtus Oeconomus ) Alter Post‐Fire Ecosystem Dynamics”. Ecology 103, no. 7. Ecology (2022). doi:10.1002/ecy.3689.
. “Variation In White Spruce Needle Respiration At The Species Range Limits: A Potential Impediment To Northern Expansion”. Plant, Cell & Environment 45, no. 7. Plant, Cell & Environment (2022): 2078 - 2092. doi:10.1111/pce.14333.
. “Vertical Gradients In Photosynthetic Physiology Diverge At The Latitudinal Range Extremes Of White Spruce”, 2022. doi:10.1101/2022.05.06.490824.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems. Ecosystems (2020). doi:10.1007/s10021-020-00542-3.
. “A Mechanism Of Expansion: Arctic Deciduous Shrubs Capitalize On Warming-Induced Nutrient Availability”. Oecologia 192, no. 3. Oecologia (2020): 671 - 685. doi:10.1007/s00442-019-04586-8.
. “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. Ecology And Evolution 7, no. 7. Ecology And Evolution (2017): 2449 - 2460. doi:10.1002/ece3.2863.
. “Plant Diversity, Physiology, And Function In The Face Of Global Change”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2017. doi:10.7916/D8K361M3.
. “Convergence In The Temperature Response Of Leaf Respiration Across Biomes And Plant Functional Types.”. Proceedings Of The National Academy Of Science 113, no. 14. Proceedings Of The National Academy Of Science (2016): 3832-3837. doi: 10.1073/pnas.1520282113.
. “High-Resolution Mapping Of Aboveground Shrub Biomass In Arctic Tundra Using Airborne Lidar And Imagery”. Remote Sensing Of Environment 184. Remote Sensing Of Environment (2016): 361 - 373. doi:10.1016/j.rse.2016.07.026.
. “Lidar Canopy Radiation Model Reveals Patterns Of Photosynthetic Partitioning In An Arctic Shrub”. Agricultural And Forest Meteorology 221. Agricultural And Forest Meteorology (2016): 78 - 93. doi:10.1016/j.agrformet.2016.02.007.
. “Estimating Aboveground Biomass And Leaf Area Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. Remote Sensing Environment 164. Remote Sensing Environment (2015): 26-35. doi:10.1016/j.rse.2015.02.023.
. “Global Variability In Leaf Respiration In Relation To Climate, Plant Functional Types And Leaf Traits”. New Phytologist 206, no. 2. New Phytologist (2015): 614 - 636. doi:10.1111/nph.13253.
. “Greater Deciduous Shrub Abundance Extends Tundra Peak Season And Increases Modeled Net Co2 Uptake”. Global Change Biology 21, no. 6. Global Change Biology (2015): 2394-2409. doi:10.1111/gcb.12852.
. “Estimating Aboveground Biomass Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “Greater Deciduous Shrub Abundance Extends Tundra Peak Season And Increases Modeled Net Carbon Dioxide Uptake”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “Ground Based Remote Sensing And Physiological Measurements Provide Novel Insights Into Canopy Photosynthetic Optimization In Arctic Shrubs”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “Implications For Seamless Modeling Of Terrestrial Ecosystems (Invited Speaker)”. International Workshop: 3D Vegetation Mapping Using Advanced Remote Sensing. International Workshop: 3D Vegetation Mapping Using Advanced Remote Sensing. St.Oswald, Germany, 2014.
. “Thermal Acclimation Of Shoot Respiration In An Arctic Woody Plant Species Subjected To 22 Years Of Warming And Altered Nutrient Supply”. Global Change Biology 20, no. 8. Global Change Biology (2014): 2618-2630. doi:10.1111/gcb.12544.
. “Differential Physiological Responses To Environmental Change Promote Woody Shrub Expansion”. Ecology And Evolution 3, no. 5. Ecology And Evolution (2013): 1149-1162. doi:10.1002/ece3.525.
. “Environmental Controls Of Foliar Respiration In Arctic Tundra Plants”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2013. doi:10.7916/D8HH6S87.
. “Hill Slope Variations In Chlorophyll Fluorescence Indices And Leaf Traits In A Small Arctic Watershed”. Arctic, Antarctic And Alpine Research 45, no. 1. Arctic, Antarctic And Alpine Research (2013): 39-49. doi:10.1657/1938-4246-45.1.39.
. “Isoprene Emissions From A Tundra Ecosystem”. Biogeosciences 10, no. 2. Biogeosciences (2013): 871 - 889. doi:10.5194/bg-10-871-2013.
.