Bibliography
Export 44 results:
Filters: Author is Anne E. Giblin [Clear All Filters]
“Widespread Occurrence Of Distinct Alkenones From Group I Haptophytes In Freshwater Lakes: Implications For Paleotemperature And Paleoenvironmental Reconstructions”. Earth And Planetary Science Letters 492. Earth And Planetary Science Letters (2018): 239 - 250. doi:10.1016/j.epsl.2018.04.002.
. “Tracking The Lacustrine Alkenone Temperature Signal From Production To Deposition: A Case Study In Toolik Lake, Ak (Poster)”. Gordon Research Conference On Organic Geochemistry. Gordon Research Conference On Organic Geochemistry. Holderness, NH, 2014.
. “Terrestrial Ecosystems At Toolik Lake, Alaska”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 90-142. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0005.
. “Temperature Calibration And Phylogenetically Distinct Distributions For Freshwater Alkenones: Evidence From Northern Alaskan Lakes.”. Geocosmochima Cosmochima Acta 180. Geocosmochima Cosmochima Acta (2016): 177-196. doi:10.1016/j.gca.2016.02.019.
. “Simulating The Effects Of Climate Change And Climate Variability On Carbon Dynamics In Arctic Tundra”. Global Biogeochemical Cycles 14, no. 4. Global Biogeochemical Cycles (2000): 1123-1136. doi:10.1029/1999GB001214.
. “Responses Of Arctic Tundra To Experimental And Observed Changes In Climate”. Ecology 76, no. 3. Ecology (1995): 694-711. doi:10.2307/1939337 .
. “The Response Of Lakes Near The Arctic Lter To Environmental Change”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 238-286. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0008.
. “Resource-Based Niche Provide A Basis For Plant Species Diversity And Dominance In Arctic Tundra”. Nature 415. Nature (2002): 68-71. doi:10.1038/415068a.
. “Reconstruction And Analysis Of Historical Changes In Carbon Storage In Arctic Tundra”. Ecology 78, no. 4. Ecology (1997): 1188-1198. doi:10.1890/0012-9658%281997%29078%5B1188%3ARAAOHC%5D2.0.CO%3B2.
. “Potential Impacts Of Climate Change On Nutrient Cycling, Cecomposition And Productivity In Arctic Ecosystems”. In Global Change And Arctic Terrestrial Ecosystems, 349-364. Global Change And Arctic Terrestrial Ecosystems. NY: Springer-Verlag, 1997.
. “Plant Functional Types And Ecosystem Change In Arctic”. In Plant Functional Types. Plant Functional Types. Cambridge, UK: Cambridge University Press, 1996.
. “Plant Carbon-Nutrient Interactions Control Co2 Exchange In Alaskan Wet Sedge Tundra Ecosystems”. Ecology 81, no. 2. Ecology (2000): 453-469. doi:10.1890%2F0012-9658%282000%29081%5B0453%3APCNICC%5D2.0.CO%3B2.
. “Nitrogen Fixation In Surface Soils And Vegetation In An Arctic Tundra Watershed: A Key Source Of Atmospheric Nitrogen”. Arctic, Antarctic And Alpine Research 38, no. 3. Arctic, Antarctic And Alpine Research (2006): 363-372. doi:10.1657/1523-0430(2006)38%5B363:Nfissa%5D2.0.Co;2.
. “Nitrogen Dynamics In A Small Arctic Watershed: Retention And Downhill Movement Of 15N”. Ecological Monographs 80, no. 2. Ecological Monographs (2010): 331-351. doi:10.1890/08-0773.1.
. “Nitrate Is An Important Nitrogen Source For Arctic Tundra Plants”. Proceedings Of The National Academy Of Sciences 115, no. 13. Proceedings Of The National Academy Of Sciences (2018): 3398 - 3403. doi:10.1073/pnas.1715382115.
. “N-15 Natural Abundances And N Use By Tundra Plants”. Oecologia 107, no. 3. Oecologia (1996): 386-394. doi:10.1007/bf00328456.
. “Microbial Processes And Plant Nutrient Availability In Arctic Soils”. In Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective, 281-300. Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective. New York: Academic Press, 1992.
. “Measuring Nutrient Availability In Arctic Soils Using Ion-Exchange Resins: A Field Test”. Soil Science Society Of America Journal 58, no. 4. Soil Science Society Of America Journal (1994): 1154-1162. doi:10.2136/sssaj1994.03615995005800040021x.
. “Land-Water Interactions”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 143-172. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0006.
. “Iron And Manganese”. In Encyclopedia Of Inland Waters. Encyclopedia Of Inland Waters. Elsevier Press, 2009.
. “Insolation And Greenhouse Gases Drove Holocene Winter And Spring Warming In Arctic Alaska”. Quaternary Science Reviews 242. Quaternary Science Reviews (2020): 106438. doi:10.1016/j.quascirev.2020.106438.
. “The Impacts Of Nutrient Enrichment And A Thermokarst Failure On Epipelic Algae In Arctic Lakes Of Differing Morphometry”. Geological Sciences. Geological Sciences. Brown University, 2013.
. “Hydrologic Modeling Of An Arctic Watershed: Towards Pan-Arctic Predictions”. Journal Of Geophysical Research: Atmospheres 104, no. D22. Journal Of Geophysical Research: Atmospheres (1999): 27507-27518. doi:10.1029/1999JD900845.
. “Hydrogen Isotope Fractionation In Leaf Waxes In The Alaskan Arctic Tundra”. Geochimica Et Cosmochimica Acta 213. Geochimica Et Cosmochimica Acta (2017): 216 - 236. doi:10.1016/j.gca.2017.06.028.
. “Global Change And The Carbon Balance Of Arctic Ecosystems”. Bioscience 42, no. 6. Bioscience (1992): 433-441. doi:10.2307/1311862.
.