Bibliography
“Effects Of Long-Term Climate Trends On The Methane And Co2 Exchange Processes Of Toolik Lake, Alaska”. Frontiers In Environmental Science 10. Frontiers In Environmental Science (2022). doi:10.3389/fenvs.2022.948529.
. “Long-Term Reliability Of The Figaro Tgs 2600 Solid-State Methane Sensor Under Low-Arctic Conditions At Toolik Lake, Alaska”. Atmospheric Measurement Techniques 13, no. 5. Atmospheric Measurement Techniques (2020): 2681 - 2695. doi:10.5194/amt-13-2681-2020.
. “Nitrate Is An Important Nitrogen Source For Arctic Tundra Plants”. Proceedings Of The National Academy Of Sciences 115, no. 13. Proceedings Of The National Academy Of Sciences (2018): 3398 - 3403. doi:10.1073/pnas.1715382115.
. “Effects Of Long-Term Nutrient Additions On Arctic Tundra, Stream, And Lake Ecosystems: Beyond Npp”. Oecologia. Oecologia (2016). doi:10.1007/s00442-016-3716-0.
. “Terrestrial Ecosystems At Toolik Lake, Alaska”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 90-142. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0005.
. “The Long-Term Ecological Research Community Metadata Standardisation Project: A Progress Report”. International Journal Of Metadata, Semantics And Ontologies 4, no. 3. International Journal Of Metadata, Semantics And Ontologies (2009): 141-153. doi:10.1504/IJMSO.2009.027750.
. “Global Negative Vegetation Feedback To Climate Warming Responses Of Leaf Litter Decomposition Rates In Cold Biomes”. Ecology Letters 10, no. 7. Ecology Letters (2007): 619-627. doi:10.1111/j.1461-0248.2007.01051.x.
. “Carbon Turnover In Alaskan Tundra Soils: Effects Of Organic Matter Quality, Temperature, Moisture And Fertilizer”. Journal Of Ecology 94, no. 4. Journal Of Ecology (2006): 740-753. doi:10.1111/j.1365-2745.2006.01139.x.
. “Climate Forcing At The Arctic Lter Site”. In Climate Variability And Ecosystem Response At Long-Term Ecological Research (Lter) Sites., 74-91. Climate Variability And Ecosystem Response At Long-Term Ecological Research (Lter) Sites. New York: Oxford University Press., 2003.
. “Inter-Annual Variability Of Plant Phenology In Tussock Tundra: Modelling Interactions Of Plant Productivity, Snowmelt, And Soil Thaw”. Global Change Biology 9, no. 5. Global Change Biology (2003): 743-758. doi:10.1046/j.1365-2486.2003.00625.x.
. “Fine Root Production And Nutrient Content In Wet And Moist Arctic Tundras As Influenced By Chronic Fertilization”. Plant And Soil 242. Plant And Soil (2002): 107-113. doi:10.1023/A:1019646124768.
. “Resource-Based Niche Provide A Basis For Plant Species Diversity And Dominance In Arctic Tundra”. Nature 415. Nature (2002): 68-71. doi:10.1038/415068a.
. “Developmental Plasticity Allows Betula Nana To Dominate Tundra Subjected To An Altered Environment”. Ecology 82, no. 1. Ecology (2001): 18-32. doi:10.1890/0012-9658(2001)082%5B0018:DPABNT%5D2.0.CO;2.
. “Species Composition Interacts With Fertilizer To Control Long-Term Change In Tundra Productivity”. Ecology 82, no. 11. Ecology (2001): 3163-3181. doi:10.1890/0012-9658%282001%29082%5B3163%3ASCIWFT%5D2.0.CO%3B2.
. “Plant Carbon-Nutrient Interactions Control Co2 Exchange In Alaskan Wet Sedge Tundra Ecosystems”. Ecology 81, no. 2. Ecology (2000): 453-469. doi:10.1890%2F0012-9658%282000%29081%5B0453%3APCNICC%5D2.0.CO%3B2.
. “Vascular Plant Species Richness In Alaskan Arctic Tundra: The Importance Of Soil Ph”. Journal Of Ecology 88, no. 1. Journal Of Ecology (2000): 54-66. doi:10.1046/j.1365-2745.2000.00426.x.
. “Biomass And Co2 Flux In Wet Sedge Tundras: Responses To Nutrients, Temperature, And Light”. Ecological Monographs 68, no. 1. Ecological Monographs (1998): 75-97. doi:10.1890/0012-9615(1998)068%5B0075:BACFIW%5D2.0.CO;2.
. “Climatic Effects On Tundra Carbon Storage Inferred From Experimental Data And A Model”. Ecology 78, no. 4. Ecology (1997): 1170-1187. doi:10.1890/0012-9658%281997%29078%5B1170%3ACEOTCS%5D2.0.CO%3B2.
. “Exsertion, Elongation, And Senescence Of Leaves Of Eriophorum Vaginatum And Carex Bigelowii In Northern Alaska”. Global Change Biology 3, no. S1. Global Change Biology (1997): 146-157. doi:10.1111/j.1365-2486.1997.gcb141.x.
. “Reconstruction And Analysis Of Historical Changes In Carbon Storage In Arctic Tundra”. Ecology 78, no. 4. Ecology (1997): 1188-1198. doi:10.1890/0012-9658%281997%29078%5B1188%3ARAAOHC%5D2.0.CO%3B2.
. “Changes In Live Plant Biomass, Primary Production, And Species Composition Along A Riverside Toposequence In Arctic Alaska, U.s.a”. Arctic And Alpine Research 28, no. 3. Arctic And Alpine Research (1996): 363-379. doi:10.2307/1552116.
. “Effects Of Drainage And Temperature On Carbon Balance Of Tussock Tundra Microcosms”. Oecologia 108, no. 4. Oecologia (1996): 737-748. doi:10.1007/BF00329050.
. “Responses Of Arctic Tundra To Experimental And Observed Changes In Climate”. Ecology 76, no. 3. Ecology (1995): 694-711. doi:10.2307/1939337 .
. “Measuring Nutrient Availability In Arctic Soils Using Ion-Exchange Resins: A Field Test”. Soil Science Society Of America Journal 58, no. 4. Soil Science Society Of America Journal (1994): 1154-1162. doi:10.2136/sssaj1994.03615995005800040021x.
. “Biogeochemical Diversity Along A Riverside Toposequence In Arctic Alaska”. Ecological Monographs 61, no. 4. Ecological Monographs (1991): 415-435. doi:10.2307/2937049.
.