Bibliography
“Predicted Responses Of Arctic And Alpine Ecosystems To Altered Seasonality Under Climate Change”. Global Change Biology 20. Global Change Biology (2014): 3256-3269. doi:10.1111/gcb.12568.
. “Interannual, Summer, And Diel Variability Of Ch $_\Textrm4$ And Co $_\Textrm2$ Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environmental Science: Processes & Impacts. Environmental Science: Processes & Impacts (2020): 10.1039.D0EM00125B. doi:10.1039/d0em00125b.
. “Performance Of A Low-Cost Methane Sensor For Ambient Concentration Measurements In Preliminary Studies”. Atmospheric Measurement Techniques Discussions 5, no. 8. Atmospheric Measurement Techniques Discussions (2012): 2567-2590. doi:10.5194/amt-5-1925-2012.
. “Eddy Covariance For Quantifying Trace Gas Fluxes From Soils”. Soil 1. Soil (2015): 187–205. doi:10.5194/soil-1-187-2015.
. “Effects Of Long-Term Climate Trends On The Methane And Co2 Exchange Processes Of Toolik Lake, Alaska”. Frontiers In Environmental Science 10. Frontiers In Environmental Science (2022). doi:10.3389/fenvs.2022.948529.
. “Interannual, Summer, And Diel Variability Of Ch4 And Co2 Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environ. Sci.: Processes Impacts 22. Environ. Sci.: Processes Impacts (2020): 2181-2198. doi:10.1039/D0EM00125B.
. “Co2 Exchange Between Air And Water In An Arctic Alaskan And Mid-Latitude Swiss Lake: The Importance Of Convective Mixing”. Journal Of Geophysical Research: Atmospheres 108, no. D12. Journal Of Geophysical Research: Atmospheres (2003): 4362. doi:10.1029/2002JD002653.
. “Long-Term Reliability Of The Figaro Tgs 2600 Solid-State Methane Sensor Under Low-Arctic Conditions At Toolik Lake, Alaska”. Atmospheric Measurement Techniques 13, no. 5. Atmospheric Measurement Techniques (2020): 2681 - 2695. doi:10.5194/amt-13-2681-2020.
. Feedbacks To Ecosystems And Climate. The Arctic Biodiversity Assessment. The Arctic Biodiversity Assessment. Akureyri, Iceland: Arctic Council - Department of Conservation of Arctic Flora and Fauna, 2013. http://hdl.handle.net/11374/223.
. “Interannual And Seasonal Patterns Of Carbon Dioxide, Water, And Energy Fluxes From Ecotonal And Thermokarst‐Impacted Ecosystems On Carbon‐Rich Permafrost Soils In Northeastern Siberia”. Journal Of Geophysical Research: Biogeosciences 122. Journal Of Geophysical Research: Biogeosciences (2017): 2651–2668. doi:10.1002/2017JG004070.
. “Changes In The Structure And Function Of Northern Alaska Ecosystems When Considering Variable Leaf-Out Times Across Groupings Of Species In A Dynamic Vegetation Model”. Global Change Biology 20, no. 3. Global Change Biology (2014): 963-978. doi:10.1111/gcb.12392.
. “Changes In The Structure And Function Of Northern Alaskan Ecosystems When Considering Variable Leaf-Out Times Across Groupings Of Species In A Dynamic Vegetation Model”. Global Change Biology 20. Global Change Biology (2014): 963–978. doi:10.1111/gcb.12392.
. “Seasonal Patterns Of Carbon Dioxide And Water Fluxes In Three Representative Tundra Ecosystems In Northern Alaska”. Ecosphere 3, no. 1. Ecosphere (2012): art 4. doi:10.1890/es11-00202.1.
. “Long-Term Release Of Carbon Dioxide From Arctic Tundra Ecosystems In Alaska”. Ecosystems 20, no. 5. Ecosystems (2017): 960 - 974. doi:10.1007/s10021-016-0085-9.
. “Strategies And Tactics Of Search Behavior In Salmonid And Centrarchid Planktivorous Fish”. University of Kansas, 1986.
. “Chironomid Fossil Remains: A Bioindicator For Post-Glacial Fish Migration Into Toolik Lake, Alaska”. Biological Sciences. Biological Sciences. University of Cincinnati, 1995.
. “Internal Wave Effects On Photosynthesis: Experiments, Theory And Modeling”. Limnology And Oceanography 53. Limnology And Oceanography (2008): 339-353. doi:10.4319/lo.2008.53.1.0339.
. “A Reevaluation Of The Search Cycle Of Planktivorous Arctic Graylings \Textit{Thymallus Arcticus”. Canadian Journal Of Fisheries And Aquatic Sciences 45. Canadian Journal Of Fisheries And Aquatic Sciences (1988): 187–192. doi:10.1139/f88-021.
. “Phytoplankton Ecology Of Arctic Lakes”. University of Michigan, 2007.
. “A Re-Evaluation Of The Search Cycle Of Planktivorous Arctic Grayling, Thymallus Arcticus”. Canadian Journal Of Fisheries And Aquatic Sciences 45. Canadian Journal Of Fisheries And Aquatic Sciences (1987): 187-192. doi:10.1139/f88-021.
. “Microbial Colonization And Decomposition Of (Carex) Litter In An Arctic Lake”. Applied And Environmental Microbiology 39. Applied And Environmental Microbiology (1980): 888-893. https://aem.asm.org/content/39/4/888.
. “Lignocellulose Mineralization By Arctic Lake Sediments In Response To Nutrient Manipulation”. Applied And Environmental Microbiology 40, no. 1. Applied And Environmental Microbiology (1980): 32-39. http://aem.asm.org/content/40/1/32.full.pdf.
. “Physical Determinants Of Microbial Colonization And Decomposition Of Plant Litter In An Arctic Lake”. Microbial Ecology 8, no. 2. Microbial Ecology (1982): 127-138. doi:10.1007/BF02010446.
. “Effects Of Nutrient Enrichment On The Colonization And Decomposition Of Plant Detritus By The Microbiota Of An Arctic Lake”. Canadian Journal Of Microbiology 28, no. 11. Canadian Journal Of Microbiology (1982): 1199-1205. doi:10.1139/m82-178.
. “Evidence Of Microbial Succession On Decaying Leaf Litter In An Arctic Lake”. Canadian Journal Of Microbiology 28, no. 6. Canadian Journal Of Microbiology (1982): 686-695. doi:10.1139/m82-103.
.