Bibliography
“A Cross-Seasonal Comparison Of Active And Total Bacterial Community Composition In Arctic Tundra Soil Using Bromodeoxyuridine Labeling”. Soil Biology And Biochemistry 43, no. 2. Soil Biology And Biochemistry (2011): 287-295. doi:10.1016/j.soilbio.2010.10.013.
. “Cross-System Comparisons Elucidate Disturbance Complexities And Generalities”. Ecosphere 2, no. 7. Ecosphere (2011): 3-26. doi:10.1890/Es11-00115.1.
. “Cumulative Nitrogen Input Drives Species Loss In Terrestrial Ecosystems”. Global Ecology And Biogeography 20, no. 6. Global Ecology And Biogeography (2011): 803-816. doi:10.1111/j.1466-8238.2011.00652.x.
. “Cycling Of Dissolved Elemental Mercury In Arctic Alaskan Lakes”. Geochemica Et Cosmochemica Acta 68, no. 6. Geochemica Et Cosmochemica Acta (2004): 1173-1184. doi:10.1016/j.gca.2003.07.023.
. “C–N–P Interactions Control Climate Driven Changes In Regional Patterns Of C Storage On The North Slope Of Alaska”. Landscape Ecology 31, no. 1. Landscape Ecology (2016): 195 - 213. doi:10.1007/s10980-015-0266-5.
. “D13 C Signatures Of Chironomids In Arctic Lakes: Role And Direction Of Benthic-Pelagic Coupling”. Vereinigung Verhandlungen International Limnologie 29. Vereinigung Verhandlungen International Limnologie (2005): 92-96. doi:10.1080/03680770.2005.11902016.
. “Daphnia Grazing On Natural Bacteria”. Limnology And Oceanography 23. Limnology And Oceanography (1978): 1039-1044. doi:10.4319/lo.1978.23.5.1039.
. “Dark Formation Of Hydroxyl Radical In Arctic Soil And Surface Waters”. Environmental Science And Technology 47, no. 22. Environmental Science And Technology (2013): 12860-12867. doi:10.1021/es4033265.
. “Decoupled Above‐ And Belowground Responses To Multi‐Decadal Nitrogen And Phosphorus Amendments In Two Tundra Ecosystems”. Ecosphere 10, no. 7. Ecosphere (2019). doi:10.1002/ecs2.2735.
. “Demographic Patterns Of Seedling Establishment And Growth Of Native Graminoids In An Alaskan Tundra Disturbance”. Journal Of Applied Ecology 20, no. 3. Journal Of Applied Ecology (1983): 965-980. doi:10.2307/2403140.
. “Depleted 15N In Hydrolysable-N Of Arctic Soils And Its Implication For Mycorrhizal Fungi–Plant Interaction”. Biogeochemistry 97, no. 2-3. Biogeochemistry (2010): 183-194. doi:10.1007/s10533-009-9365-1.
. “Describing Fluxes Within Lakes Using Temperature Arrays And Surface Meteorology”. Vereinigung Verhandlungen International Limnologie 30. Vereinigung Verhandlungen International Limnologie (2008): 339-344. doi:10.1080/03680770.2008.11902139.
. “Determinants Of Community Compositional Change Are Equally Affected By Global Change”. Ecology Letters 24. Ecology Letters (2021): 1892–1904. doi:10.1111/ele.13824.
. “Determination Of Leaf Area Index, Total Foliar N, And Normalized Difference Vegetation Index For Arctic Ecosystems Dominated By Cassiope Tetragona”. Arctic, Antarctic And Alpine Research 41, no. 4. Arctic, Antarctic And Alpine Research (2009): 426-433. doi:10.1657/1938-4246-41.4.426.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology. Polar Biology (2017). doi:10.1007/s00300-017-2201-5.
. “The Development And Field Test Of A Tactical Model Of The Planktivorous Feeding Of White Crappie (Pomoxis Annularis)”. Ecological Monographs 54, no. 1. Ecological Monographs (1984): 65-98. doi:10.2307/1942456.
. “Developmental Plasticity Allows Betula Nana To Dominate Tundra Subjected To An Altered Environment”. Ecology 82, no. 1. Ecology (2001): 18-32. doi:10.1890/0012-9658(2001)082%5B0018:DPABNT%5D2.0.CO;2.
. “Diagenetic Trace Metal Profiles In Arctic Lake Sediments”. Environmental Science And Technology 20, no. 3. Environmental Science And Technology (1986): 299-302. doi:10.1021/es00145a012.
. “Diel Variations In Inorganic Carbon And Nitrogen Uptake By Phytoplankton In An Arctic Lake”. Journal Of Plankton Research 6, no. 4. Journal Of Plankton Research (1984): 571-590. doi:10.1093/plankt/6.4.571.
. “Diet And Digestion Rates Of Slimy Sculpin, Cottus Cognatus, In An Alaskan Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 42, no. 3. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 483-487. doi:10.1139/F85-065.
. “Diet Variability In Arctic Grayling In Arctic Lakes”. Vereinigung Verhandlungen International Limnologie 29. Vereinigung Verhandlungen International Limnologie (2005): 685-689. doi:10.1080/03680770.2005.11902766.
. “Differences In Carbon And Nutrient Fractions Among Arctic Growth Forms”. Oecologia 77, no. 4. Oecologia (1988): 506-514. doi:10.1007/BF00377266.
. “Differences In Growth And Nutrient Use Among Arctic Plant Growth Forms”. Functional Ecology 3, no. 1. Functional Ecology (1989): 73-80. doi:10.2307/2389677.
. “Differential Physiological Responses To Environmental Change Promote Woody Shrub Expansion”. Ecology And Evolution 3, no. 5. Ecology And Evolution (2013): 1149-1162. doi:10.1002/ece3.525.
. “Differential Responses Of Ecotypes To Climate In A Ubiquitous Arctic Sedge: Implications For Future Ecosystem C Cycling”. New Phytologist. New Phytologist (2019). doi:10.1111/nph.15790.
.