Bibliography
“Responses Of A Tundra System To Warming Using Scamps: A Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil Model”. Ecological Monographs 84. Ecological Monographs (2014): 151–170. doi:10.1890/12-2119.1.
. “River Ecosystems In A Changing Arctic: Using Long-Term Ecological Research (Lter) Data To Asses Recent Change”. Association For The Sciences Of Limnology And Oceanography Joint Meeting. Association For The Sciences Of Limnology And Oceanography Joint Meeting. Portland, OR, 2014.
. “Seasonal Changes In Light Availability Modify The Temperature Dependence Of Ecosystem Metabolism In An Arctic Stream”. Ecology 95. Ecology (2014): 2826–2839. doi:10.1890/13-1963.1.
. “Soil Bacterial Community Composition Altered By Increased Nutrient Availability In Arctic Tundra Soils”. Frontiers In Microbiology 5. Frontiers In Microbiology (2014): 516. doi:10.3389/fmicb.2014.00516.
. “Spatial And Temporal Variability In Dominant Heat Fluxes In Arctic Rivers”. American Geophysical Union Fall Meeting. American Geophysical Union Fall Meeting. San Francisco, 2014.
. “Stochastic Modeling Of Carbon Photo-Mineralization Along Arctic Rivers”. American Geophysical Union Fall Meeting. American Geophysical Union Fall Meeting. San Francisco, 2014.
. .
“Sunlight Controls Water Column Processing Of Carbon In Arctic Freshwaters”. Science 345, no. 6199. Science (2014): 925-928. doi:10.1126/science.1253119.
. “Tall Deciduous Shrubs Offset Delayed Start Of Growing Season Through Rapid Leaf Development In The Alaskan Arctic Tundra”. Arctic, Antarctic And Alpine Research 46, no. 3. Arctic, Antarctic And Alpine Research (2014). doi:10.1657/1938-4246-46.3.682.
. “Terrestrial Ecosystems At Toolik Lake, Alaska”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 90-142. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0005.
. “Terrestrial-Aquatic Transfers Of Carbon Dioxide, Methane, And Organic Carbon From Riparian Wetlands To An Arctic Headwater Stream”. Department Of Ecology And Evolutionary Biology. Department Of Ecology And Evolutionary Biology. University of Michigan, 2014. http://hdl.handle.net/2027.42/107433.
. “Thermal Acclimation Of Shoot Respiration In An Arctic Woody Plant Species Subjected To 22 Years Of Warming And Altered Nutrient Supply”. Global Change Biology 20, no. 8. Global Change Biology (2014): 2618-2630. doi:10.1111/gcb.12544.
. “Tracking The Lacustrine Alkenone Temperature Signal From Production To Deposition: A Case Study In Toolik Lake, Ak (Poster)”. Gordon Research Conference On Organic Geochemistry. Gordon Research Conference On Organic Geochemistry. Holderness, NH, 2014.
. “Turbulence And Ghg Emissions In Lakes Across Latitudes: Implications For Biogeochemistry (Invited Speaker)”. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Hyytiälä Field Station, Korkeakoski, Finland, 2014.
. “Turbulence At The Air-Water Interface In Lakes Of Different Sizes: Consequences For Gas Transfer Coefficients”. American Geophysical Union Fall Meeting. American Geophysical Union Fall Meeting. San Francisco, 2014.
. “Turbulence: Implications For Emissions Of Greenhouse Gases”. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Quebec City, QC, 2014.
. “Understanding How Lake Population Of Arctic Char Are Structured And Function With Special Consideration Of The Potential Effects Of Climate Change”. Alaska Chapter Of The American Fisheries Society. Alaska Chapter Of The American Fisheries Society. Juneau, AK, 2014.
. “Understanding How Lake Populations Of Arctic Char Are Structured And Function With Special Consideration Of The Potential Effects Of Climate Change: A Multi-Faceted Approach”. Oecologia 176, no. 1. Oecologia (2014): 81-94. doi:10.1007/s00442-014-2993-8.
. “Arctic Arthropod Assemblages In Habitats Of Differing Shrub Dominance”. Ecography 36, no. 9. Ecography (2013): 994-1003. doi:10.1111/j.1600-0587.2012.00078.x.
. .
“A Biotic Awakening: Responses Of Soil Communities In A Changing Arctic”. Cary Institute Of Ecosystem Studies. Cary Institute Of Ecosystem Studies. Millbrook, NY, 2013.
. “Bugs And Birds”. Frontier Scientists (Youtube), 2013. http://frontierscientists.com/videos/bugs-and-birds/.
. “Carbon-Degrading Enzyme Activities Stimulated By Increased Nutrient Availability In Arctic Tundra Soils”. Plos One 8, no. 19. Plos One (2013): e77212. doi:10.1371/journal.pone.0077212.
. “Comparing Trophic Level Position Of Invertebrates In Fish And Fishless Lakes In Arctic Alaska”. Utah State University, 2013.
. “Comparing Trophic Level Position Of Invertebrates In Fish And Fishless Lakes In Arctic Alaska (Poster)”. Student Colloquium. Student Colloquium. Salt Lake City, UT, 2013.
.