Bibliography
“Biophysical Factors Influencing The Geographic Variability Of Soil Heat Flux Near Toolik Lake, Alaska : Implications For Terrain Sensitivity”. University of Alaska, Fairbanks, 1986.
. “Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition”. Ecology 87, no. 8. Ecology (2006): 2068-2079. doi:10.1890/0012-9658(2006)87%5B2068:VIDOMC%5D2.0.CO;2.
. “Dissolved Organic Matter Dynamics In An Arctic Catchment”. University of Michigan, 2004. http://hdl.handle.net/2027.42/124704.
. .
“Production And Export Of Dissolved C In Arctic Tundra Mesocosms: The Roles Of Vegetation And Water Flow”. Biogeochemistry 60. Biogeochemistry (2002): 213-234. doi:10.1023/A:1020371412061.
. “Bacterial Responses In Activity And Community Composition To Photo-Oxidation Of Dissolved Organic Matter From Soil And Surface Waters”. Aquatic Sciences 69. Aquatic Sciences (2007): 96-107. doi:10.1007/s00027-006-0908-4.
. “Latent Heat Exchange In The Boreal And Arctic Biomes”. Global Change Biology 20, no. 11. Global Change Biology (2014): 3439–3456. doi:10.1111/gcb.12640.
. “Geochemistry Of Soils And Streams On Surfaces Of Varying Ages In Arctic Alaska”. Arctic, Antarctic And Alpine Research 39. Arctic, Antarctic And Alpine Research (2007): 84-98. doi:10.1657/1523-0430%282007%2939%5B84%3AGOSASO%5D2.0.CO%3B2.
. .
“Stream Geochemistry As An Indicator Of Increasing Permafrost Thaw Depth In An Arctic Watershed”. Chemical Geology 273, no. 1–2. Chemical Geology (2010): 76-81. doi:10.1016/j.chemgeo.2010.02.013.
. “Linking Permafrost Thaw To Shifting Biogeochemistry And Food Web Resources In An Arctic River”. Global Change Biology. Global Change Biology (2018). doi:10.1111/gcb.14448.
. “Discharge, Legacy Effects And Nutrient Availability As Determinants Of Temporal Patterns In Biofilm Metabolism And Accrual In An Arctic River”. Freshwater Biology 60, no. 11. Freshwater Biology (2015): 2323 - 2336. doi:10.1111/fwb.12659.
. “River Ecosystems In A Changing Arctic: Using Long-Term Ecological Research (Lter) Data To Asses Recent Change”. Association For The Sciences Of Limnology And Oceanography Joint Meeting. Association For The Sciences Of Limnology And Oceanography Joint Meeting. Portland, OR, 2014.
. “Disturbance, Nutrients, And Antecedent Flow Conditions Affect Macroinvertebrate Community Structure And Productivity In An Arctic River”. Limnology And Oceanography 64, no. S1. Limnology And Oceanography (2019): S93-S104. doi:10.1002/lno.10942.
. “Vulnerability Of Arctic Zooplankton Species To Predation By Small Lake Trout (Salvelinus Namaycush)”. Journal Of The Fisheries Research Board Of Canada 35. Journal Of The Fisheries Research Board Of Canada (1978): 1495-1500. doi:10.1139/f78-236.
. “Effects Of Large Lake Trout (Salvelinus Namaycush) On The Dietary Habits Of Small Lake Trout: A Comparison Of Stable Isotopes (Delta N-15 And Delta C-13) And Stomach Content Analyses”. Hydrobiologia 579, no. 1. Hydrobiologia (2007): 175-185. doi:10.1007/s10750-006-0399-2.
. “Processes Controlling Nitrogen Release And Turnover In Arctic Tundra”. University of Alaska, 1989.
. “Remote Sensing Of Land Surface Conditions In Arctic Tundra Regions For Climatological Applications Using Microwave Radiometry”. Electrical Engineering And Atmospheric, Oceanic And Space Sciences. Electrical Engineering And Atmospheric, Oceanic And Space Sciences. University of Michigan, 1999. http://hdl.handle.net/2027.42/131691.
. “Quantifying Dominant Heat Fluxes In An Arctic Alaskan River With Mechanistic River Temperature Modeling”. Civil And Environmental Engineering. Civil And Environmental Engineering. Utah State University, 2018. https://digitalcommons.usu.edu/etd/7224.
. “Spatial And Temporal Variability In Dominant Heat Fluxes In Arctic Rivers”. American Geophysical Union Fall Meeting. American Geophysical Union Fall Meeting. San Francisco, 2014.
. “Quantifying Reach-Average Effects Of Hyporheic Exchange On Arctic River Temperatures In An Area Of Continuous Permafrost”. Water Resources Research 55. Water Resources Research (2019). doi:10.1029/2018WR023463.
. “Preliminary Identification Of Important Heat Fluxes In Rivers In Arctic Alaska”. Utah State University Spring Runoff Conference. Utah State University Spring Runoff Conference. Logan, UT, 2014.
. “Estimating Discharge In Low-Order Rivers With High-Resolution Aerial Imagery”. Water Resources Research 54, no. 256391021-49211781-241612713251161-2D44841-2711-41-2222556011107444. Water Resources Research (2018): 863 - 878. doi:10.1002/2017WR021868.
. “Pulse-Labeling Studies Of Carbon Cycling In Arctic Tundra Ecosystems: The Contribution Of Photosynthates To Methane Emission”. Global Biogeochemical Cycles 16, no. 4. Global Biogeochemical Cycles (2002): 1062. doi:10.1029/2001GB001456.
. “Sediments And Organic Carbon In An Arctic Lake”. In Transport Of Carbon And Minerals In Major World Rivers, Lakes And Estuaries. Vol. 66. Transport Of Carbon And Minerals In Major World Rivers, Lakes And Estuaries. Hamburg, Germany: Mitt. Geol. Paleot. Inst. Univ. Hamburg, 1988.
.