Bibliography
“Small But Mighty: Impacts Of Rodent-Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36. Functional Ecology (2022): 2331–2343. doi:10.1111/1365-2435.14127.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Small Herbivores With Big Impacts: Tundra Voles ( Microtus Oeconomus ) Alter Post‐Fire Ecosystem Dynamics”. Ecology 103, no. 7. Ecology (2022). doi:10.1002/ecy.3689.
. “Small Herbivores With Big Impacts: Tundra Voles (Microtus Oeconomus) Alter Post-Fire Ecosystem Dynamics”. Ecology 103. Ecology (2022): e3689. doi:10.1002/ecy.3689.
. “The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”, 2022. doi:10.7302/5919.
. “Sporadic P Limitation Constrains Microbial Growth And Facilitates Som Accumulation In The Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil Model”. Soil Biology And Biochemistry 165. Soil Biology And Biochemistry (2022): 108489. doi:10.1016/j.soilbio.2021.108489.
. “Summer Thaw Duration Is A Strong Predictor Of The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”. Environmental Microbiology 24, no. 12. Environmental Microbiology (2022): 6220 - 6237. doi:10.1111/1462-2920.16218.
. “Thermal Modeling Of Three Lakes Within The Continuous Permafrost Zone In Alaska Using The Lake 2.0 Model”. Geoscientific Model Development 15, no. 19. Geoscientific Model Development (2022): 7421 - 7448. doi:10.5194/gmd-15-7421-2022.
. “Variation In White Spruce Needle Respiration At The Species Range Limits: A Potential Impediment To Northern Expansion”. Plant, Cell & Environment 45, no. 7. Plant, Cell & Environment (2022): 2078 - 2092. doi:10.1111/pce.14333.
. “Vegetation Type Is An Important Predictor Of The Arctic Summer Land Surface Energy Budget”. Nature Communications 13. Nature Communications (2022): 6379. doi:10.1038/s41467-022-34049-3.
. “Vegetation Type Is An Important Predictor Of The Arctic Summer Land Surface Energy Budgetabstract”. Nature Communications 13, no. 1. Nature Communications (2022). doi:10.1038/s41467-022-34049-3.
. “Vertical Gradients In Photosynthetic Physiology Diverge At The Latitudinal Range Extremes Of White Spruce”, 2022. doi:10.1101/2022.05.06.490824.
. “Alleviation Of Nutrient Co‐Limitation Induces Regime Shifts In Post‐Fire Community Composition And Productivity In Arctic Tundra”. Global Change Biology. Global Change Biology (2021). doi:10.1111/gcb.15646.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography 66. Limnology And Oceanography (2021). doi:10.1002/lno.11682.
. “Arctic Tundra”. In Arctic Ecology, 103-132. Arctic Ecology. John Wiley & Sons, Ltd, 2021. doi:https://doi.org/10.1002/9781118846582.ch5.
. “Aufeis Fields As Novel Groundwater-Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography 66. Limnology And Oceanography (2021): 607–624. doi:10.1002/lno.11626.
. “Biogeochemical Responses Over 37 Years To Manipulation Of Phosphorus Concentrations In An Arctic River: The Upper Kuparuk River Experiment”. Hydrological Processes 35. Hydrological Processes (2021). doi:10.1002/hyp.14075.
. “The Challenges Of Long Term Ecological Research: A Historical Analysissustaining Long-Term Ecological Research: Perspectives From Inside The Lter Program”. In, 59:81 - 116. Cham: Springer International Publishing, 2021. doi:10.1007/978-3-030-66933-1_4.
. “Determinants Of Community Compositional Change Are Equally Affected By Global Change”. Ecology Letters 24. Ecology Letters (2021): 1892–1904. doi:10.1111/ele.13824.
. “Ecology Of Arctic Streams And Rivers”. In Arctic Ecology, 181-218. Arctic Ecology. John Wiley & Sons, Ltd, 2021. doi:https://doi.org/10.1002/9781118846582.ch8.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems 24. Ecosystems (2021): 667–685. doi:10.1007/s10021-020-00542-3.
. “Effects Of Increased Temperature On Arctic Slimy Sculpin (Cottus Cognatus) Is Mediated By Food Availability: Implications For Climate Change”. Freshwater Biology 66. Freshwater Biology (2021): 549–561. doi:10.1111/fwb.13659.
. “Enhanced Plant Leaf P And Unchanged Soil P Stocks After A Quarter Century Of Warming In The Arctic Tundra”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3838.
. “Global Data Set Of Long-Term Summertime Vertical Temperature Profiles In 153 Lakes”. Scientific Data 8. Scientific Data (2021): 200. doi:10.1038/s41597-021-00983-y.
. “Herbivore Absence Can Shift Dry Heath Tundra From Carbon Source To Sink During Peak Growing Season”. Environmental Research Letters 16. Environmental Research Letters (2021): 024027. doi:10.1088/1748-9326/abd3d0.
.