Bibliography
“Sediments And Organic Carbon In An Arctic Lake”. In Transport Of Carbon And Minerals In Major World Rivers, Lakes And Estuaries. Vol. 66. Transport Of Carbon And Minerals In Major World Rivers, Lakes And Estuaries. Hamburg, Germany: Mitt. Geol. Paleot. Inst. Univ. Hamburg, 1988.
. “Land-Water Interactions”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 143-172. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0006.
. “Integration Of Lakes And Streams In A Landscape Perspective: The Importance Of Material Processing On Spatial Patterns And Temporal Coherence”. Freshwater Biology 43. Freshwater Biology (2000): 477-497. doi:10.1046/j.1365-2427.2000.00515.x.
. “Lakes Of The Arctic”. In Encyclopedia Of Inland Waters, Volume 2, pp. 577-588. Encyclopedia Of Inland Waters, Volume 2. Oxford: Elsevier., 2009.
. “The Flux Of Co2 And Ch4 From Lakes And Rivers In Arctic Alaska”. Hydrobiologia 240. Hydrobiologia (1992): 23-36. doi:10.1007/Bf00013449.
. “A Lake's Life Is Not Its Own”. Nature 408. Nature (2000): 149-150. doi:10.1038/35041659.
. “Arctic Lakes And Streams As Gas Conduits To The Atmosphere: Implications For Tundra Carbon Budgets”. Science 251, no. 4991. Science (1991): 298-301. doi:10.1126/science.251.4991.298.
. “Land-Water Linkages: The Influence Of Terrestrial Diversity On Aquatic Systems”. In The Role Of Biodiversity In Arctic And Alpine Tundra Ecosystems, 297-310. The Role Of Biodiversity In Arctic And Alpine Tundra Ecosystems. Berlin: Springer-Verlag, 1995.
. “Stable Isotopes And Planktonic Trophic Structure In Arctic Lakes”. Ecology 73, no. 2. Ecology (1992): 561-566. doi:10.2307/1940762.
. “Ecosystem-Scale Experiments: The Use Of Stable Isotopes In Fresh Waters”. In Environmental Chemistry Of Lakes And Reservoirs, 91-120. Environmental Chemistry Of Lakes And Reservoirs. Washington, DC: American Chemical Society, 1994. doi:10.1021/ba-1994-0237.ch004.
. “The Biogeochemistry And Zoogeography Of Lakes And Rivers In Arctic Alaska”. Hydrobiologia 240. Hydrobiologia (1992): 1-14. doi:10.1007/Bf00013447.
. “Sediment Nitrification, Denitrification And Nitrous Oxide Production In A Deep Arctic Lake”. Applied And Environmental Microbiology 46. Applied And Environmental Microbiology (1983): 1084-1092. doi:10.1128/AEM.46.5.1084-1092.1983.
. “Sediment Nitrification, Denitrification, And Nitrous Oxide Production In An Arctic Lake”. University of Alaska, 1981.
. “Understanding How Lake Population Of Arctic Char Are Structured And Function With Special Consideration Of The Potential Effects Of Climate Change”. Alaska Chapter Of The American Fisheries Society. Alaska Chapter Of The American Fisheries Society. Juneau, AK, 2014.
. “In Hot(Ter) Water: Predictions Of Arctic Char Growth And Consumption Under Climate Change Scenarios On The Alaska North Slope”. Western Division Of The American Fisheries Society. Western Division Of The American Fisheries Society. Mazatlan, MX, 2014.
. “Trophic Structure Of Apex Fish Communities In Closed Versus Leaky Lakes Of Arctic Alaska”. Oecologia 194, no. 3. Oecologia (2020): 491 - 504. doi:10.1007/s00442-020-04776-9.
. “The Abiotic And Biotic Controls Of Arctic Lakefood Webs: A Multifaceted Approach To Quantifying Trophic Structure And Function”. Watershed Sciences. Watershed Sciences. Utah State University, 2018. https://digitalcommons.usu.edu/etd/7293.
. “At The Forefront: Evidence Of The Applicability Of Using Environmental Dna To Quantify The Abundance Of Fish Populations In Natural Lentic Waters With Additional Sampling Considerations”. Canadian Journal Of Fisheries And Aquatic Sciences. Canadian Journal Of Fisheries And Aquatic Sciences (2017): 1 - 5. doi:10.1139/cjfas-2017-0114.
. “A Changing Menu In A Changing Climate: Using Experimental And Long-Term Data To Predict Invertebrate Prey Biomass And Availability In Lakes Of Arctic Alaska”. Freshwater Biology 63. Freshwater Biology (2018): 1352-1364. doi:10.1111/fwb.13162.
. “Investigating The Morphological And Genetic Divergence Of Arctic Char ( \Textit{Salvelinus Alpinus) Populations In Lakes Of Arctic Alaska”. Ecology And Evolution 11. Ecology And Evolution (2021): 3040–3057. doi:10.1002/ece3.7211.
. “Alleviation Of Nutrient Co‐Limitation Induces Regime Shifts In Post‐Fire Community Composition And Productivity In Arctic Tundra”. Global Change Biology. Global Change Biology (2021). doi:10.1111/gcb.15646.
. “Past, Present, And Future Roles Of Long-Term Experiments In The Lter Network”. Bioscience 62, no. 4. Bioscience (2012): 377-389. doi:10.1525/bio.2012.62.4.9.
. “Variation Among Biomes In Temporal Dynamics Of Aboveground Primary Production”. Science 291. Science (2001): 481-484. doi:10.1126/science.291.5503.481.
. “Shrub Encroachment In North American Grasslands: Shift In Growth Form Dominance Rapidly Alters Control Of Ecosystem C Inputs”. Global Change Biology 14, no. 3. Global Change Biology (2008): 615-623. doi:10.1111/j.1365-2486.2007.01512.x.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology. Polar Biology (2017). doi:10.1007/s00300-017-2201-5.
.