Bibliography
“Energy Flow In Arctic Lake Food Webs: The Role Of Glacial History, Fish Predators, And Benthic-Pelagic Linkages”. Utah State University, 2006.
. “Food Web Structure And Function In Two Arctic Streams With Contrasting Disturbance Regimes”. Freshwater Biology 51, no. 7. Freshwater Biology (2006): 1249-1263. doi:10.1111/j.1365-2427.2006.01567.x.
. “From Lilliput To Brobdingnag: Extending Models Of Mycorrhizal Function Across Scales”. Bioscience 56, no. 11. Bioscience (2006): 889-900. doi:10.1641/0006-3568%282006%2956%5B889%3AFLTBEM%5D2.0.CO%3B2.
. “General Features Of The Arctic Relevant To Climate Change In Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 330-338. doi:10.1579/0044-7447%282006%2935%5B330%3AGFOTAR%5D2.0.CO%3B2.
. .
“Historical Changes In Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 339-346. doi:10.1579/0044-7447%282006%2935%5B339%3AHCIAFE%5D2.0.CO%3B2.
. “Identifying Differences In Carbon Exchange Among Arctic Ecosystem Types”. Ecosystems 9, no. 2. Ecosystems (2006): 288-304. doi:10.1007/s10021-005-0146-y.
. “Increased Ectomycorrhizal Fungal Abundance After Long-Term Fertilization And Warming Of Two Arctic Tundra Ecosystems”. New Phytologist 171, no. 2. New Phytologist (2006): 391-404. doi:10.1111/j.1469-8137.2006.01778.x.
. “Increases In Atmospheric [Co2] And The Soil Food Web”. In Managed Ecosystems And Co2, 187:413-428. Managed Ecosystems And Co2. Springer Berlin Heidelberg, 2006. doi:10.1007/3-540-31237-4_23.
. .
“Key Findings, Science Gaps And Policy Recommendations”. Ambio 35, no. 7. Ambio (2006): 411-415. doi:10.1579/0044-7447%282006%2935%5B411%3AKFSGAP%5D2.0.CO%3B2.
. “Landscape Control Of High Latitude Lakes In A Changing Climate”. In Trends In Antarctic Terrestrial And Limnetic Ecosystems, 221-252. Trends In Antarctic Terrestrial And Limnetic Ecosystems. Berlin: Springer, 2006.
. “Landscape Effects On Growth Of Age-0 Arctic Grayling In Tundra Streams”. Utah State University, 2006.
. .
“Microbial Community Composition And Function Across An Arctic Tundra Landscape”. Ecology 87. Ecology (2006): 1659-1670. doi:10.1890/0012-9658%282006%2987%5B1659%3AMCCAFA%5D2.0.CO%3B2.
. “N-15 In Symbiotic Fungi And Plants Estimates Nitrogen And Carbon Flux Rates In Arctic Tundra”. Ecology 87, no. 4. Ecology (2006): 816-822. doi:10.1890/0012-9658(2006)87%5B816:Nisfap%5D2.0.Co;2.
. “Neighbor Effects On Germination, Survival And Growth In Two Arctic Tundra Plant Communities”. Ecography 29. Ecography (2006): 44-56. doi:10.1111/j.2005.0906-7590.04096.x.
. “Nitrogen Fixation In Surface Soils And Vegetation In An Arctic Tundra Watershed: A Key Source Of Atmospheric Nitrogen”. Arctic, Antarctic And Alpine Research 38, no. 3. Arctic, Antarctic And Alpine Research (2006): 363-372. doi:10.1657/1523-0430(2006)38%5B363:Nfissa%5D2.0.Co;2.
. “A Pan-Arctic Evaluation Of Changes In River Discharge During The Latter Half Of The 20Th Century”. Geophysical Research Letters 33, no. 6. Geophysical Research Letters (2006): L06715. doi:10.1029/2006GL025753.
. “Photodecomposition Of Methylmercury In An Arctic Alaskan Lake”. Environmental Science And Technology 40, no. 4. Environmental Science And Technology (2006): 1212-1216. doi:10.1021/es0513234.
. .
“Physical Pathways Of Nutrient Supply In A Small, Ultra-Oligotrophic Lake During Summer Stratification”. Limnology And Oceanography 51, no. 2. Limnology And Oceanography (2006): 1107-1124. doi:10.4319/lo.2006.51.2.1107.
. “Plant Community Responses To Experimental Warming Across The Tundra Biome”. Proceedings Of The National Academy Of Sciences 103, no. 5. Proceedings Of The National Academy Of Sciences (2006): 1342-1346. doi:10.1073/pnas.0503198103.
. “Profiles Of Temporal Thaw Depth Beneath Two Arctic Stream Types Using Ground-Penetrating Radar”. Permafrost And Periglacial Processes 17, no. 4. Permafrost And Periglacial Processes (2006): 341-355. doi:10.1002/ppp.566.
.