Bibliography
“High Leaf Respiration Rates May Limit The Success Of White Spruce Saplings Growing In The Kampfzone At The Arctic Treeline”. Frontiers In Plant Science 12. Frontiers In Plant Science (2021): 746464. doi:10.3389/fpls.2021.746464.
. “Host Identity As A Driver Of Moss-Associated N2 Fixation Rates In Alaska”. Ecosystems 24. Ecosystems (2021): 530–547. doi:10.1007/s10021-020-00534-3.
. “How Long Do Population Level Field Experiments Need To Be? Utilising Data From The 40‐Year‐Old Lter Network”. Ecology Letters 24. Ecology Letters (2021): 1103–1111. doi:10.1111/ele.13710.
. “Interspecific And Intraspecific Variation In Leaf Toughness Of Arctic Plants In Relation To Habitat And Nutrient Supply”. Arctic Science. Arctic Science (2021): 1–15. doi:10.1139/as-2020-0016.
. “Intraspecific Variation In Phenology Offers Resilience To Climate Change For \Textit{Eriophorum Vaginatum”. Arctic Science. Arctic Science (2021): 1–17. doi:10.1139/as-2020-0039.
. “Investigating The Morphological And Genetic Divergence Of Arctic Char ( \Textit{Salvelinus Alpinus) Populations In Lakes Of Arctic Alaska”. Ecology And Evolution 11. Ecology And Evolution (2021): 3040–3057. doi:10.1002/ece3.7211.
. “Lacustrine Leaf Wax Hydrogen Isotopes Indicate Strong Regional Climate Feedbacks In Beringia Since The Last Ice Age”. Quaternary Science Reviews 269. Quaternary Science Reviews (2021): 107130. doi:10.1016/j.quascirev.2021.107130.
. “Large And Small Herbivores Have Strong Effects On Tundra Vegetation In Scandinavia And Alaska”. Ecology And Evolution 11. Ecology And Evolution (2021): 12141–12152. doi:10.1002/ece3.7977.
. “Long-Term Experimental Warming And Fertilization Have Opposing Effects On Ectomycorrhizal Root Enzyme Activity And Fungal Community Composition In Arctic Tundra”. Soil Biology And Biochemistry 154. Soil Biology And Biochemistry (2021): 108151. doi:10.1016/j.soilbio.2021.108151.
. “Long‐Term Hydrological, Biogeochemical, And Ecological Data For The Kuparuk River, North Slope, Alaska”. Hydrological Processes 35. Hydrological Processes (2021). doi:10.1002/hyp.14115.
. “An Open-Source, Durable, And Low-Cost Alternative To Commercially Available Soil Temperature Data Loggers”. Sensors 22. Sensors (2021): 148. doi:10.3390/s22010148.
. “Predicting Thermal Responses Of An Arctic Lake To Whole‐Lake Warming Manipulation”. Geophysical Research Letters 48. Geophysical Research Letters (2021). doi:10.1029/2021gl092680.
. .
“Rainfall Alters Permafrost Soil Redox Conditions, But Meta-Omics Show Divergent Microbial Community Responses By Tundra Type In The Arctic”. Soil Systems 5. Soil Systems (2021): 17. doi:10.3390/soilsystems5010017.
. “Shallow Soils Are Warmer Under Trees And Tall Shrubs Across Arctic And Boreal Ecosystems”. Environmental Research Letters 16. Environmental Research Letters (2021): 015001. doi:10.1088/1748-9326/abc994.
. “Shrub Expansion In The Arctic May Induce Large‐Scale Carbon Losses Due To Changes In Plant‐Soil Interactions”. Plant And Soil 463. Plant And Soil (2021): 643–651. doi:10.1007/s11104-021-04919-8.
. “Solar Position Confounds The Relationship Between Ecosystem Function And Vegetation Indices Derived From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 298-299. Agricultural And Forest Meteorology (2021): 108291. doi:10.1016/j.agrformet.2020.108291.
. “Stream Dissolved Organic Matter In Permafrost Regions Shows Surprising Compositional Similarities But Negative Priming And Nutrient Effects”. Global Biogeochemical Cycles 35. Global Biogeochemical Cycles (2021). doi:10.1029/2020gb006719.
. “Sustaining Long-Term Ecological Research: Perspectives From Inside The Lter Program”. In The Challenges Of Long Term Ecological Research: A Historical Analysis, 59:81–116. The Challenges Of Long Term Ecological Research: A Historical Analysis. Cham: Springer International Publishing, 2021. doi:10.1007/978-3-030-66933-1_4.
. “Time Lags: Insights From The U.s. Long Term Ecological Research Network”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3431.
. “Tundra Wildfire Triggers Sustained Lateral Nutrient Loss In Alaskan Arctic”. Global Change Biology. Global Change Biology (2021). doi:https://doi.org/10.1111/gcb.15507.
. “Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12‐Yr, Low‐Level Fertilization Experiment”. Limnology And Oceanography. Limnology And Oceanography (2021): lno.11893. doi:10.1002/lno.11893.
. “Above- And Belowground Responses To Long-Term Herbivore Exclusion”. Arctic, Antarctic, And Alpine Research 52. Arctic, Antarctic, And Alpine Research (2020): 109-119. doi:10.1080/15230430.2020.1733891.
. “Active Layer Freeze-Thaw And Water Storage Dynamics In Permafrost Environments Inferred From Insar”. Remote Sensing Of Environment 248. Remote Sensing Of Environment (2020): 112007. doi:10.1016/j.rse.2020.112007.
. “An Approach To Modeling Resource Optimization For Substitutable And Interdependent Resources”. Ecological Modelling 425. Ecological Modelling (2020): 109033. doi:10.1016/j.ecolmodel.2020.109033.
.