Bibliography
“Performance Of A Low-Cost Methane Sensor For Ambient Concentration Measurements In Preliminary Studies”. Atmospheric Measurement Techniques Discussions 5, no. 8. Atmospheric Measurement Techniques Discussions (2012): 2567-2590. doi:10.5194/amt-5-1925-2012.
. “Phenological Response Of Tundra Plants To Background Climate Variation Tested Using The International Tundra Experiment”. Philosophical Transactions Of The Royal Society B: Biological Sciences 368. Philosophical Transactions Of The Royal Society B: Biological Sciences (2013): 20120481. doi:10.1098/rstb.2012.0481.
. “Phenological Responses Of Tundra Plants To Background Climate Warming Tested Using The International Tundra Experiment”. Philosophical Transactions Of Royal Society: Biology 368, no. 1624. Philosophical Transactions Of Royal Society: Biology (2013): 2012481. doi:10.1098/rstb.2012.0481.
. “Phosphorus Cycling In Arctic Lake Sediments: Adsorption And Authigenic Minerals”. Archives Of Hydrobiology 109. Archives Of Hydrobiology (1987): 161-179.
. “Phosphorus Limitation In An Arctic River Biofilm- A Whole Ecosystem Experiment”. Water Research 24, no. 12. Water Research (1990): 1545-1549. doi:10.1016/0043-1354(90)90089-O.
. “Photochemical Alteration Of Organic Carbon Draining Permafrost Soils Shifts Microbial Metabolic Pathways And Stimulates Respiration”. Nature Communications 8. Nature Communications (2017): 772. doi:10.1038/s41467-017-00759-2.
. “Photodecomposition Of Methylmercury In An Arctic Alaskan Lake”. Environmental Science And Technology 40, no. 4. Environmental Science And Technology (2006): 1212-1216. doi:10.1021/es0513234.
. “Photoprotective Pigments In A Pond Morph Of Daphnia Middendorffiana”. Arctic 36, no. 4. Arctic (1983): 365-368. doi:10.14430/arctic2292.
. “Phototoxicity And Fish Predation: Selective Factors In Color Morphs In Heterocope”. Limnology And Oceanography 26. Limnology And Oceanography (1981): 454-460. doi:10.4319/lo.1981.26.3.0454.
. “Phototoxicity And Fish Predation: Selective Factors In Color Morphs In Heterocope1: Coloration Of Heterocope”. Limnology And Oceanography 26. Limnology And Oceanography (1981): 454–460. doi:10.4319/lo.1981.26.3.0454.
. “Phylogenetic Diversity In Freshwater‐Dwelling Isochrysidales Haptophytes With Implications For Alkenone Production”. Geobiology. Geobiology (2019). doi:10.1111/gbi.12330.
. “Physical, Chemical And Biotic Effects On Arctic Zooplankton Communities And Diversity”. Special Volume Of Limnology And Oceanography 49. Special Volume Of Limnology And Oceanography (2004): 1250-1261. doi:10.4319/lo.2004.49.4_part_2.1250.
. “Physical Determinants Of Microbial Colonization And Decomposition Of Plant Litter In An Arctic Lake”. Microbial Ecology 8, no. 2. Microbial Ecology (1982): 127-138. doi:10.1007/BF02010446.
. “Physical Pathways Of Nutrient Supply In A Small, Ultra-Oligotrophic Lake During Summer Stratification”. Limnology And Oceanography 51, no. 2. Limnology And Oceanography (2006): 1107-1124. doi:10.4319/lo.2006.51.2.1107.
. “Physiological And Growth Responses Of Arctic Plants To A Field Experiment Simulating Climatic Change”. Ecology 77, no. 3. Ecology (1996): 822-840. doi:10.2307/2265504.
. “Planktivorous Feeding Ecology Of Arctic Grayling ( \Textit{Thymallus Arcticus )”. Canadian Journal Of Fisheries And Aquatic Sciences 39. Canadian Journal Of Fisheries And Aquatic Sciences (1982): 475–482. doi:10.1139/f82-065.
. “Planktivorous Feeding Ecology Of Arctic Grayling (Thymallus Arcticus)”. Canadian Journal Of Fisheries And Aquatic Sciences 39, no. 3. Canadian Journal Of Fisheries And Aquatic Sciences (1982): 475-482. doi:10.1139/f82-065.
. “Plant And Soil Responses To Neighbour Removal And Fertilization In Alaskan Tussock Tundra”. Journal Of Ecology 92, no. 4. Journal Of Ecology (2004): 635-647. doi:10.1111/j.0022-0477.2004.00902.x.
. “Plant Carbon-Nutrient Interactions Control Co2 Exchange In Alaskan Wet Sedge Tundra Ecosystems”. Ecology 81, no. 2. Ecology (2000): 453-469. doi:10.1890%2F0012-9658%282000%29081%5B0453%3APCNICC%5D2.0.CO%3B2.
. “Plant Community Responses To Experimental Warming Across The Tundra Biome”. Proceedings Of The National Academy Of Sciences 103, no. 5. Proceedings Of The National Academy Of Sciences (2006): 1342-1346. doi:10.1073/pnas.0503198103.
. “Plant Functional Types Do Not Predict Biomass Responses To Removal And Fertilization In Alaskan Tussock Tundra”. Journal Of Ecology 96, no. 4. Journal Of Ecology (2008): 713-726. doi:10.1111/j.1365-2745.2008.01378.x.
. “Plant Nutrient-Acquisition Strategies Change With Soil Age”. Trends In Ecology And Evolution 23, no. 2. Trends In Ecology And Evolution (2008): 95-103. doi:10.1016/j.tree.2007.10.008.
. “Plant Responses To Species Removal And Experimental Warming In Alaskan Tussock Tundra”. Oikos 84. Oikos (1999): 417-434. doi:10.2307/3546421.
. “Plant-Herbivore Interactions In Alaskan Arctic Tundra Change With Soil Nutrient Availability”. Oikos 116, no. 3. Oikos (2007): 407-418. doi:10.1111/j.0030-1299.2007.15449.x.
. “Plant-Soil Processes In (Eriophorum Vaginatum) Tussock Tundra In Alaska: A Systems Modeling Approach”. Ecological Monographs 54. Ecological Monographs (1984): 361-405. doi:10.2307/1942593.
.