Bibliography
“Is Arctic Greening Consistent With The Ecology Of Tundra? Lessons From An Ecologically Informed Mass Balance Model”. Environmental Research Letters 13, no. 12. Environmental Research Letters (2018): 125007. doi:10.1088/1748-9326/aaeb50.
. “Advantages Of A Two Band Evi Calculated From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 149, no. 9. Agricultural And Forest Meteorology (2009): 1560-1563. doi:10.1016/j.agrformet.2009.03.016.
. “The Footprint Of Alaskan Tundra Fires During The Past Half-Century: Implications For Surface Properties And Radiative Forcing”. Environmental Research Letters 7, no. 4. Environmental Research Letters (2012): 044039. doi:10.1088/1748-9326/7/4/044039.
. “Drought Legacies Influence The Long-Term Carbon Balance Of A Freshwater Marsh”. Journal Of Geophysical Research: Biogeosciences 115, no. G3. Journal Of Geophysical Research: Biogeosciences (2010): 9 pp. doi:10.1029/2009JG001215.
. “The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”, 2022. doi:10.7302/5919.
. “Summer Thaw Duration Is A Strong Predictor Of The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”. Environmental Microbiology 24, no. 12. Environmental Microbiology (2022): 6220 - 6237. doi:10.1111/1462-2920.16218.
. “Rainfall Alters Permafrost Soil Redox Conditions, But Meta-Omics Show Divergent Microbial Community Responses By Tundra Type In The Arctic”. Soil Systems 5. Soil Systems (2021): 17. doi:10.3390/soilsystems5010017.
. “Structural Asymmetry And The Stability Of Diverse Food Webs”. Nature 442. Nature (2006): 265-269. doi:10.1038/nature04887.
. “Higher Predation Risk For Insect Prey At Low Latitudes And Elevations”. Science 356, no. 6339. Science (2017): 742 - 744. doi:10.1126/science.aaj1631.
. “Effects Of Climate Change On The Fresh Waters Of Arctic And Subarctic North America”. Hydrological Processes 11, no. 8. Hydrological Processes (1997): 873-902. doi:10.1002/(SICI)1099-1085(19970630)11:8%3C873::AID-HYP510%3E3.0.CO;2-6.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Above- And Belowground Responses To Long-Term Herbivore Exclusion”. Arctic, Antarctic, And Alpine Research 52. Arctic, Antarctic, And Alpine Research (2020): 109-119. doi:10.1080/15230430.2020.1733891.
. “Recovery After World's Largest Tundra Fire Raises Questions”. Geophysical Institute, University of Alaska Fairbanks, 2011. http://www2.gi.alaska.edu/ScienceForum/ASF20/2080.html.
. “Change Of Microplankton Community Structure In Response To Fertilization Of An Arctic Lake”. Hydrobiologia 312, no. 3. Hydrobiologia (1995): 183-190. doi:10.1007/BF00015511.
. “Community Structure And Bottom-Up Regulation Of Heterotrophic Microplankton In Arctic Lter Lakes”. Hydrobiologia 240. Hydrobiologia (1992): 133-142. doi:10.1007/BF00013458.
. “Flowpaths And Spatial Heterogeneity Of Storm-River-Water In Small Multi-Basin Lakes”. Limnology And Oceanography 54, no. 6. Limnology And Oceanography (2009): 2041-2057. doi:10.4319/lo.2009.54.6.2041.
. “Modelling The Fate And Transport Of Negatively Buoyant Storm–River Water In Small Multi-Basin Lakes”. Environmental Modeling And Software 25, no. 1. Environmental Modeling And Software (2009): 146-157. doi:10.1016/j.envsoft.2009.07.002.
. “Life Under The Ice: Spatial And Temporal Patterns In Rates Of Water Column And Sediment Respiration In 5 Alaskan Arctic Lakes”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “The Long-Term Ecological Research Community Metadata Standardisation Project: A Progress Report”. International Journal Of Metadata, Semantics And Ontologies 4, no. 3. International Journal Of Metadata, Semantics And Ontologies (2009): 141-153. doi:10.1504/IJMSO.2009.027750.
. “Effect Of Growth Temperature On Photosynthetic Capacity And Respiration In Three Ecotypes Oferiophorum Vaginatum”. Ecology And Evolution 8, no. 7. Ecology And Evolution (2018): 3711 - 3725. doi:10.1002/ece3.3939.
. “Natural Carbon Isotope Tracers In Arctic Aquatic Food Webs”. In Stable Isotopes In Ecological Research. Stable Isotopes In Ecological Research. New York: Springer-Verlag, 1989.
. “Bomb Radiocarbon In Arctic Alaskan Aquatic And Terrestrial Biota”. In Radioactivity And Environmental Security In The Oceans: New Research And Policy Priorities In The Arctic And North Atlantic, 135-144. Radioactivity And Environmental Security In The Oceans: New Research And Policy Priorities In The Arctic And North Atlantic. Woods Hole: Woods Hole Oceanographic Institution, 1993.
. “Carnivory And Resource-Based Niche Differentiation In Anuran Larvae: Implications For Food Web And Experimental Ecology”. Freshwater Biology 54, no. 3. Freshwater Biology (2009): 572-586. doi:10.1111/j.1365-2427.2008.02134.x.
. “Nutrient Availability And Uptake By Tundra Plants”. In Landscape Function And Disturbance In Arctic Tundra, 203-221. Landscape Function And Disturbance In Arctic Tundra. New York: Springer Berlin Heidelberg, 1996. doi:10.1007/978-3-662-01145-4_10.
. “The Planktivorous Feeding Ecology Of Arctic Grayling (Thymallus Arcticus)”. University of Kansas, 1980.
.