Bibliography
“Holocene Pollen Records From The Central Arctic Foothills, Northern Alaska: Testing The Role Of Substrate In The Response Of Tundra To Climate Change”. Journal Of Ecology 91. Journal Of Ecology (2003): 1034-1048. doi:10.1046/j.1365-2745.2003.00833.x.
. “Some Physical And Chemical Characteristics Of An Arctic Beaded Stream”. Ecology Of An Arctic Watershed: Landscape Processes And Linkages. Ecology Of An Arctic Watershed: Landscape Processes And Linkages. University of Ohio in Columbus, 1987.
. “Evidence For Dissolved Organic Matter As The Primary Source And Sink Of Photochemically Produced Hydroxyl Radical In Arctic Surface Waters”. Environmental Science Process Impacts 16, no. 4. Environmental Science Process Impacts (2014): 807-822. doi:10.1039/c3em00596h.
. “Dark Formation Of Hydroxyl Radical In Arctic Soil And Surface Waters”. Environmental Science And Technology 47, no. 22. Environmental Science And Technology (2013): 12860-12867. doi:10.1021/es4033265.
. “Spring Photosynthetic Onset And Net Co 2 Uptake In Alaska Triggered By Landscape Thawing”. Global Change Biology 24. Global Change Biology (2018): 3416 - 3435. doi:10.1111/gcb.14283.
. “Spring Photosynthetic Onset And Net Co $_\Textrm2$ Uptake In Alaska Triggered By Landscape Thawing”. Global Change Biology 24. Global Change Biology (2018): 3416–3435. doi:10.1111/gcb.14283.
. “The Effect Of Acid Strength And Postacidification Reaction Time On The Determination Of Chlorophyll \Textita In Ethanol Extracts Of Aquatic Periphyton”. Limnology And Oceanography: Methods 14. Limnology And Oceanography: Methods (2016): 839–852. doi:10.1002/lom3.10130.
. “Disturbance And Productivity As Codeterminants Of Stream Food Web Complexity In The Arctic”. Limnology And Oceanography 58. Limnology And Oceanography (2013): 2158-2170. doi:10.4319/lo.2013.58.6.2158.
. “Effect Of Particle Size And Heterogeneity On Sediment Biofilm Metabolism And Nutrient Uptake Scaled Using Two Approaches”. Ecosphere 9, no. 3. Ecosphere (2018): e02137. doi:10.1002/ecs2.2137.
. “Food Web Structure And Function In Two Arctic Streams With Contrasting Disturbance Regimes”. Freshwater Biology 51, no. 7. Freshwater Biology (2006): 1249-1263. doi:10.1111/j.1365-2427.2006.01567.x.
. “Ecotypic Differences In The Phenology Of The Tundra Species Eriophorum Vaginatum Reflect Sites Of Origin”. Ecology And Evolution 7, no. 22. Ecology And Evolution (2017): 9775 - 9786. doi:10.1002/ece3.3445.
. “Effects Of Natural Disturbance On Stream Communities: A Habitat Template Analysis Of Arctic Headwater Streams: Habitat Template, Disturbance, And Arctic Stream Communities”. Freshwater Biology 56. Freshwater Biology (2011): 1342–1357. doi:10.1111/j.1365-2427.2011.02573.x.
. “Effects Of Natural Disturbance On Benthic Communities Of Arctic Headwater Streams, North Slope, Alaska, U.s.a”. Department Of Biological Sciences. Department Of Biological Sciences. University of Alabama, 2008.
. “Shrub Expansion In The Arctic May Induce Large‐Scale Carbon Losses Due To Changes In Plant‐Soil Interactions”. Plant And Soil 463. Plant And Soil (2021): 643–651. doi:10.1007/s11104-021-04919-8.
. “Effects Of Natural Disturbance On Arctic Stream Communities”. Ecology And Environmental Science. Ecology And Environmental Science. University of Maine, 2004.
. “Ecotypic Differences In The Phenology Of The Tundra Species \Textit{Eriophorum Vaginatum Reflect Sites Of Origin”. Ecology And Evolution 7. Ecology And Evolution (2017): 9775–9786. doi:10.1002/ece3.3445.
. “Intraspecific Variation In Phenology Offers Resilience To Climate Change For \Textit{Eriophorum Vaginatum”. Arctic Science. Arctic Science (2021): 1–17. doi:10.1139/as-2020-0039.
. “Winter Conditions And Spring Convection In Toolik Lake, Alaska”. University of California at Santa Barbara, 2008.
. “Microfaunal Response To Fertilization Of An Arctic Tundra River”. University of North Carolina, 1994.
. “Rapid Decline In River Icings Detected In Arctic Alaska: Implications For A Changing Hydrologic Cycle And River Ecosystems”. Geophysical Research Letters 44, no. 7. Geophysical Research Letters (2017): 3228 - 3235. doi:10.1002/2016GL072397.
. “Comparison Of Instantaneous And Constant-Rate Stream Tracer Experiments Through Non-Parametric Analysis Of Residence Time Distributions”. Water Resources Research 44, no. 6. Water Resources Research (2008): W06404. doi:10.1029/2007WR006274.
. “Recovery Of Arctic Tundra From Thermal Erosion Disturbance Is Constrained By Nutrient Accumulation: A Modeling Analysis”. Ecological Applications 25, no. 5. Ecological Applications (2015): 1271-1289. doi:10.1890/14-1323.1.
. “Temperature Response Of Leaf Respiration Influenced By Emerging Canopy Dynamics In Arctic Shrub Species”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2011.
. “Do Individual Plant Species Show Predictable Responses To Nitrogen Addition Across Multiple Experiments?”. Oikos 110. Oikos (2005): 547-555. doi:10.1111/j.0030-1299.2005.13792.x.
.