Bibliography
“Plant Diversity, Physiology, And Function In The Face Of Global Change”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2017. doi:10.7916/D8K361M3.
. “Plant Functional Diversity And Resource Control Of Primary Production In Alaskan Arctic Tundras”. In Arctic And Alpine Biodiversity: Patterns, Causes, And Ecosystem Consequences, 113:199-212. Springer-Verlag Ecological Studies Series. Arctic And Alpine Biodiversity: Patterns, Causes, And Ecosystem Consequences. NY: Springer-Verlag, 1995.
. “Plant Functional Types And Ecosystem Change In Arctic”. In Plant Functional Types. Plant Functional Types. Cambridge, UK: Cambridge University Press, 1996.
. “Plant Functional Types Do Not Predict Biomass Responses To Removal And Fertilization In Alaskan Tussock Tundra”. Journal Of Ecology 96, no. 4. Journal Of Ecology (2008): 713-726. doi:10.1111/j.1365-2745.2008.01378.x.
. “Plant Nutrient-Acquisition Strategies Change With Soil Age”. Trends In Ecology And Evolution 23, no. 2. Trends In Ecology And Evolution (2008): 95-103. doi:10.1016/j.tree.2007.10.008.
. “Plant Responses To Species Removal And Experimental Warming In Alaskan Tussock Tundra”. Oikos 84. Oikos (1999): 417-434. doi:10.2307/3546421.
. “ Plant Soil Feedbacks With Changing Vegetation Structure And Composition In A Warming Arctic”. Botany. Botany. University of Florida, 2011.
. “Plant-Herbivore Interactions In Alaskan Arctic Tundra Change With Soil Nutrient Availability”. Oikos 116, no. 3. Oikos (2007): 407-418. doi:10.1111/j.0030-1299.2007.15449.x.
. “Plant-Soil Processes In (Eriophorum Vaginatum) Tussock Tundra In Alaska: A Systems Modeling Approach”. Ecological Monographs 54. Ecological Monographs (1984): 361-405. doi:10.2307/1942593.
. “Plant‐Soil Processes In Eriophorum Vaginatum Tussock Tundra In Alaska: A Systems Modeling Approach: Ecological Archives M054-002”. Ecological Monographs 54. Ecological Monographs (1984): 361–405. doi:10.2307/1942593.
. “The Plecoptera And Trichoptera Of The Arctic North Slope Of Alaska”. Western North American Naturalist 74. Western North American Naturalist (2014): 275–285. doi:10.3398/064.074.0303.
. “Plot-Scale Evidence Of Tundra Vegetation Change And Links To Recent Summer Warming”. Nature Climate Change 2, no. 6. Nature Climate Change (2012): 453-457. doi:10.1038/nclimate1465.
. “Polar Limnology”. In Lakes And Reservoirs, 63-105. Lakes And Reservoirs. Amsterdam, Netherlands: Elsevier Scientific Publishing Co., 1984.
. “The Population Ecology Of Some Arctic Alaskan Chironomidae”. University of Michigan, 1980.
. “A Portal To Toolik Field Station”. Frontier Scientists, 2012. http://frontierscientists.com/2012/10/portal-toolik-field-station/.
. “Postfire Energy Exchange In Arctic Tundra: The Importance And Climatic Implications Of Burn Severity”. Global Change Biology 17, no. 9. Global Change Biology (2011): 2831-2841. doi:10.1111/j.1365-2486.2011.02441.x.
. “Potential Carbon Emissions Dominated By Carbon Dioxide From Thawed Permafrost Soils”. Nature Climate Change 6. Nature Climate Change (2016): 950–953. doi:10.1038/nclimate3054.
. “Potential Impacts Of Climate Change On Nutrient Cycling, Cecomposition And Productivity In Arctic Ecosystems”. In Global Change And Arctic Terrestrial Ecosystems, 349-364. Global Change And Arctic Terrestrial Ecosystems. NY: Springer-Verlag, 1997.
. “The Predator-Prey Interaction Of Planktivorous Fish And Zooplankton”. American Scientist 67, no. 5. American Scientist (1979): 572-581. http://www.jstor.org/stable/27849438.
. “Predicted Responses Of Arctic And Alpine Ecosystems To Altered Seasonality Under Climate Change”. Global Change Biology 20. Global Change Biology (2014): 3256-3269. doi:10.1111/gcb.12568.
. “Predicting Ecosystem Carbon Balance In A Warming Arctic: The Importance Of Long-Term Thermal Acclimation Potential And Inhibitory Effects Of Light On Respiration”. Global Change Biology 20. Global Change Biology (2014): 1901–1912. doi:10.1111/gcb.12549.
. “Predicting Gross Primary Productivity In Terrestrial Ecosystems”. Ecological Applications 7, no. 3. Ecological Applications (1997): 882-894. doi:10.1890/1051-0761%281997%29007%5B0882%3APGPPIT%5D2.0.CO%3B2.
. “Predicting Hydrologic Function With Aquatic Gene Fragments”. Water Resources Research 54. Water Resources Research (2018): 2424-2435. doi:10.1002/2017WR021974.
. “Predicting Thermal Responses Of An Arctic Lake To Whole‐Lake Warming Manipulation”. Geophysical Research Letters 48. Geophysical Research Letters (2021). doi:10.1029/2021gl092680.
. “Preferential Use Of Organic Nitrogen For Growth By A Non-Mycorrhial Arctic Sedge”. Nature 361. Nature (1993): 150-153. doi:10.1038/361150a0.
.