Bibliography
“Size Structure Of A Lake Trout (Salvelinus Namaycush) Population In An Arctic Lake: Influence Of Angling And Implications For Fish Community Structure”. Canadian Journal Of Fisheries And Aquatic Sciences 46. Canadian Journal Of Fisheries And Aquatic Sciences (1989): 2153-2156. doi:10.1139/f89-266.
. “Size Structure Of A Lake Trout ( \Textit{Salvelinus Namaycush ) Population An Arctic Lake: Influence Of Angling And Implications For Fish Community Structure”. Canadian Journal Of Fisheries And Aquatic Sciences 46. Canadian Journal Of Fisheries And Aquatic Sciences (1989): 2153–2156. doi:10.1139/f89-266.
. “Small But Mighty: Impacts Of Rodent-Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36. Functional Ecology (2022): 2331–2343. doi:10.1111/1365-2435.14127.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Small Herbivores With Big Impacts: Tundra Voles ( Microtus Oeconomus ) Alter Post‐Fire Ecosystem Dynamics”. Ecology 103, no. 7. Ecology (2022). doi:10.1002/ecy.3689.
. “Small Herbivores With Big Impacts: Tundra Voles (Microtus Oeconomus) Alter Post-Fire Ecosystem Dynamics”. Ecology 103. Ecology (2022): e3689. doi:10.1002/ecy.3689.
. “Snail Populations In Arctic Lakes: Competition Mediated By Predation”. Oecologia 82, no. 1. Oecologia (1990): 26-32. doi:10.1007/Bf00318529.
. “Soil Bacterial Community Composition Altered By Increased Nutrient Availability In Arctic Tundra Soils”. Frontiers In Microbiology 5. Frontiers In Microbiology (2014): 516. doi:10.3389/fmicb.2014.00516.
. “Soil Carbon Availability Decouples Net Nitrogen Mineralization And Net Nitrification Across United States Long Term Ecological Research Sites”. Biogeochemistry 162, no. 1. Biogeochemistry (2023): 13 - 24. doi:10.1007/s10533-022-01011-w.
. “Soil Nutrient Availability Affects Tundra Plant Community Composition And Plant–Vole Interactions”. Arctic, Antarctic, And Alpine Research 56. Arctic, Antarctic, And Alpine Research (2024): 2356276. doi:10.1080/15230430.2024.2356276.
. “Solar Position Confounds The Relationship Between Ecosystem Function And Vegetation Indices Derived From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 298-299. Agricultural And Forest Meteorology (2021): 108291. doi:10.1016/j.agrformet.2020.108291.
. “Solar Uv Radiation In A Changing World: Roles Of Cryosphere–Land–Water–Atmosphere Interfaces In Global Biogeochemical Cycles”. Photochemical & Photobiological Sciences 18. Photochemical & Photobiological Sciences (2019): 747–774. doi:10.1039/c8pp90063a.
. “Solar-Induced Chlorophyll Fluorescence Exhibits A Universal Relationship With Gross Primary Productivity Across A Wide Variety Of Biomes”. Global Change Biology 25, no. 4. Global Change Biology (2019): e4 - e6. doi:10.1111/gcb.14565.
. “Solar-Induced Chlorophyll Fluorescence Is Strongly Correlated With Terrestrial Photosynthesis For A Wide Variety Of Biomes: First Global Analysis Based On Oco-2 And Flux Tower Observations”. Global Change Biology 24, no. 93. Global Change Biology (2018): 3990 - 4008. doi:10.1111/gcb.14297.
. “Solar‐Induced Chlorophyll Fluorescence Exhibits A Universal Relationship With Gross Primary Productivity Across A Wide Variety Of Biomes”. Global Change Biology 25. Global Change Biology (2019). doi:10.1111/gcb.14565.
. “Sources And Partitioning Of Organic Matter In A Pelagic Microbial Food Web Inferred From The Isotopic Composition (Del 13C And Del 15N) Of Zooplankton Species”. Archiv Fur Hydrobiologie Beiheft 48. Archiv Fur Hydrobiologie Beiheft (1996): 53-61. http://www.schweizerbart.de//publications/detail/isbn/9783510470495/Archiv\_Advances\_i\_Limnol\_Heft\_48.
. “Spatial Variation Among Lakes Within Landscapes: Ecological Organization Along Lake Chains”. Ecosystems 2, no. 5. Ecosystems (1999): 395-410. doi:10.1007/s100219900089.
. “Spatial Variation Among Lakes Within Landscapes: Ecological Organization Along Lake Chains.”. Ecosystems 2. Ecosystems (1999): 395–410. doi:10.1007/s100219900089.
. “Spatiotemporal Patterns Of Tundra Fires: Late-Quaternary Charcoal Records From Alaska”. Biogeosciences 12. Biogeosciences (2015): 3177-3209. doi:10.5194/bgd-12-3177-2015.
. “Species Composition Interacts With Fertilizer To Control Long-Term Change In Tundra Productivity”. Ecology 82, no. 11. Ecology (2001): 3163-3181. doi:10.1890/0012-9658%282001%29082%5B3163%3ASCIWFT%5D2.0.CO%3B2.
. “Species Compositional Differences On Different-Aged Glacial Landscapes Drive Contrasting Responses Of Tundra To Nutrient Addition”. Journal Of Ecology 93. Journal Of Ecology (2005): 770-782. doi:10.1111/j.1365-2745.2005.01006.x.
. “Species Diversity Along Nutrient Gradients: An Analysis Of Resource Competition In Model Ecosystems”. Ecosystems 7, no. 3. Ecosystems (2004): 296-310. doi:10.1007/s10021-003-0233-x.
. “Species Responses To Nitrogen Fertilization In Herbaceous Plant Communities, And Associated Species Traits”. Ecological Archives 89, no. 4. Ecological Archives (2008): 1175. doi:10.1890/07-1104.1.
. “Spectral Indices For Remote Sensing Of Phytomass, Deciduous Shrubs, And Productivity In Alaskan Arctic Tundra”. International Journal Of Remote Sensing 36, no. 17. International Journal Of Remote Sensing (2015): 4344 - 4362. doi:10.1080/01431161.2015.1080878.
. “Sporadic P Limitation Constrains Microbial Growth And Facilitates Som Accumulation In The Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil Model”. Soil Biology And Biochemistry 165. Soil Biology And Biochemistry (2022): 108489. doi:10.1016/j.soilbio.2021.108489.
.