Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Landscape Genomics Provides Evidence Of Ecotypic Adaptation And A Barrier To Gene Flow At Treeline For The Arctic Foundation Species Eriophorum Vaginatum”. Frontiers In Plant Science 13. Frontiers In Plant Science (2022). doi:10.3389/fpls.2022.860439.
. “Host Identity As A Driver Of Moss-Associated N2 Fixation Rates In Alaska”. Ecosystems 24. Ecosystems (2021): 530–547. doi:10.1007/s10021-020-00534-3.
. “What Is The Relationship Between Changes In Canopy Leaf Area And Changes In Photosynthetic Co2 Flux In Arctic Ecosystems?”. Journal Of Ecology 95, no. 1. Journal Of Ecology (2007): 139-150. doi:10.1111/j.1365-2745.2006.01187.x.
. “Incident Radiation And The Allocation Of Nitrogen Within Arctic Plant Canopies: Implications For Predicting Gross Primary Productivity”. Global Change Biology 18, no. 9. Global Change Biology (2012): 2838-2852. doi:10.1111/j.1365-2486.2012.02754.x.
. “Hydrologic Modeling Of An Arctic Watershed: Towards Pan-Arctic Predictions”. Journal Of Geophysical Research: Atmospheres 104, no. D22. Journal Of Geophysical Research: Atmospheres (1999): 27507-27518. doi:10.1029/1999JD900845.
. “Characterizing Land-Atmosphere Coupling And The Implications For Subsurface Thermodynamics”. Journal Of Climate 20, no. 1. Journal Of Climate (2007): 21-37. doi:10.1175/JCLI3982.1.
. “The Impact Of Detailed Snow Physics On The Simulation Of Snow Cover And Subsurface Thermodynamics At Continental Scales”. Journal Of Hydrometeorology 2, no. 3. Journal Of Hydrometeorology (2001): 228-242. doi:10.1175/1525-7541(2001)002<0228%3ATIODSP>2.0.CO%3B2.
. “An Approach To Understanding Hydrologic Connectivity On The Hillslope And The Implications For Nutrient Transport”. Global Biogeochemical Cycles 17, no. 4. Global Biogeochemical Cycles (2003): 1105. doi:10.1029/2003GB002041.
. “The Role Of Snow Cover In The Warming Of Arctic Permafrost”. Geophysical Research Letters 30, no. 13. Geophysical Research Letters (2003): 1721. doi:10.1029/2003GL017337.
. “A Simple Model For Analyzing Climatic Effects On Terrestrial Carbon And Nitrogen Dynamics: An Arctic Case Study”. Global Biogeochemical Cycles 20, no. 3. Global Biogeochemical Cycles (2006): GB3016. doi:10.1029/2005GB002603.
. “Simulating The Effects Of Climate Change And Climate Variability On Carbon Dynamics In Arctic Tundra”. Global Biogeochemical Cycles 14, no. 4. Global Biogeochemical Cycles (2000): 1123-1136. doi:10.1029/1999GB001214.
. “Effects Of Bottom Boundary Placement On Subsurface Heat Storage: Implications For Climate Model Simulations”. Geophysical Research Letters 34, no. 2. Geophysical Research Letters (2007): L02702. doi:10.1029/2006GL028546.
. “Small Herbivores With Big Impacts: Tundra Voles ( Microtus Oeconomus ) Alter Post‐Fire Ecosystem Dynamics”. Ecology 103, no. 7. Ecology (2022). doi:10.1002/ecy.3689.
. “Small Herbivores With Big Impacts: Tundra Voles (Microtus Oeconomus) Alter Post-Fire Ecosystem Dynamics”. Ecology 103. Ecology (2022): e3689. doi:10.1002/ecy.3689.
. “Growth Conditions And Vitality Of Sphagnum In A Tundra Community Along The Alaska Pipeline Haul Road ”. Arctic 34, no. 1. Arctic (1981): 48-54. http://www.jstor.org/stable/40509102.
. “Ecotypic Differentiation In Photosynthesis And Growth Of Eriophorum Vaginatum Along A Latitudinal Gradient In The Arctic Tundra”. Botany 92, no. 8. Botany (2014): 551-561. doi:10.1139/cjb-2013-0320.
. “Ecotypic Differentiation In Photosynthesis And Growth Of \Textit{Eriophorum Vaginatum Along A Latitudinal Gradient In The Arctic Tundra”. Botany 92. Botany (2014): 551–561. doi:10.1139/cjb-2013-0320.
. “Spatial Variation Among Lakes Within Landscapes: Ecological Organization Along Lake Chains.”. Ecosystems 2. Ecosystems (1999): 395–410. doi:10.1007/s100219900089.
. “Spatial Variation Among Lakes Within Landscapes: Ecological Organization Along Lake Chains”. Ecosystems 2, no. 5. Ecosystems (1999): 395-410. doi:10.1007/s100219900089.
. “Global Environmental Change And The Nature Of Aboveground Net Primary Productivity Responses: Insights From Long-Term Experiments”. Oecologia 177, no. 4. Oecologia (2015): 935-947. doi:10.1007/s00442-015-3230-9.
. “Simulating Heat Transport Of Harmonic Temperature Signals In The Earth’s Shallow Subsurface: Lower-Boundary Sensitivities”. Geophysical Research Letters 33. Geophysical Research Letters (2006): L14402. doi:10.1029/2006GL026816.
. “Simulating Heat Transport Of Harmonic Temperature Signals In The Earth's Shallow Subsurface: Lower-Boundary Sensitivities”. Geophysical Research Letters 33, no. 14. Geophysical Research Letters (2006): L14402. doi:10.1029/2006GL026816.
. “A Coupled Geochemical And Biogeochemical Approach To Characterize Bio-Reactivity Of Dissolved Organic Matter From A Headwater Stream”. Journal Of Geophysical Research: Biogeosciences 119, no. 8. Journal Of Geophysical Research: Biogeosciences (2014): 1520-1537. doi:10.1002/2013jg002600.
. “A Coupled Geochemical And Biogeochemical Approach To Characterize The Bioreactivity Of Dissolved Organic Matter From A Headwater Stream: Biogeochemistry & Lability Of Stream Dom”. Journal Of Geophysical Research: Biogeosciences 119. Journal Of Geophysical Research: Biogeosciences (2014): 1520–1537. doi:10.1002/2013jg002600.
. “Long-Term Response Of The Kuparuk River Ecosystem To Phosphorus Fertilization”. Ecology 85, no. 4. Ecology (2004): 939-954. doi:10.1890/02-4039.
.