Bibliography
“Asynchrony Among Local Communities Stabilises Ecosystem Function Of Metacommunities”. Ecology Letters 20, no. 12. Ecology Letters (2017): 1534 - 1545. doi:10.1111/ele.12861.
. “At The Forefront: Evidence Of The Applicability Of Using Environmental Dna To Quantify The Abundance Of Fish Populations In Natural Lentic Waters With Additional Sampling Considerations”. Canadian Journal Of Fisheries And Aquatic Sciences. Canadian Journal Of Fisheries And Aquatic Sciences (2017): 1 - 5. doi:10.1139/cjfas-2017-0114.
. “Aufeis Fields As Novel Groundwater-Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography 66. Limnology And Oceanography (2021): 607–624. doi:10.1002/lno.11626.
. “Aufeis Fields As Novel Groundwater‐Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography. Limnology And Oceanography (2020). doi:10.1002/lno.11626.
. “Autumn Migratory Departure Is Influenced By Reproductive Timing And Weather In An Arctic Passerine”. Journal Of Ornithology. Journal Of Ornithology (2020). doi:10.1007/s10336-020-01754-z.
. “Bacterial Diversity In An Arctic Lake: A Freshwater Sar11 Cluster”. Aquatic Microbial Ecology 11, no. 3. Aquatic Microbial Ecology (1996): 271-277. doi:10.3354/Ame011271.
. “Bacterial Responses In Activity And Community Composition To Photo-Oxidation Of Dissolved Organic Matter From Soil And Surface Waters”. Aquatic Sciences 69. Aquatic Sciences (2007): 96-107. doi:10.1007/s00027-006-0908-4.
. “Bacterioplankton Community Shifts In An Arctic Lake Correlate With Seasonal Changes In Organic Matter Source”. Applied And Environmental Microbiology 69, no. 4. Applied And Environmental Microbiology (2003): 2253-2268. doi:10.1128/AEM.69.4.2253-2268.2003.
. “Bacterioplankton Dispersal And Biogeochemical Function Across Alaskan Arctic Catchments”. Environmental Microbiology 24, no. 12. Environmental Microbiology (2022): 5690 - 5706. doi:10.1111/1462-2920.16259.
. “Below-Ground Carbon Transfer Among Betula Nana May Increase With Warming In Arctic Tundra”. New Phytologist 192, no. 3. New Phytologist (2011): 689-698. doi:10.1111/j.1469-8137.2011.03835.x.
. “Belowground Community Responses To Fire: Meta-Analysis Reveals Contrasting Responses Of Soil Microorganisms And Mesofauna”. Oikos. Oikos (2018). doi:10.1111/oik.05738.
. “Belowground Community Responses To Fire: Meta-Analysis Reveals Contrasting Responses Of Soil Microorganisms And Mesofauna”. Oikos 128. Oikos (2019): 309–327. doi:10.1111/oik.05738.
. “Benthic Community Metabolism In Deep And Shallow Arctic Lakes During 13 Years Of Whole-Lake Fertilization”. Limnology And Oceanography 60, no. 5. Limnology And Oceanography (2015). doi:10.1002/lno.10120.
. “Benthic Community Metabolism In Deep And Shallow Arctic Lakes During 13 Years Of Whole-Lake Fertilization: Nutrient Effects On Arctic Lake Benthos”. Limnology And Oceanography 60. Limnology And Oceanography (2015): 1604–1618. doi:10.1002/lno.10120.
. “Benthic Metabolism Of Arctic Coastal Ponds, Barrow, Alaska”. Vereinigung Verhandlungen International Limnologie 19. Vereinigung Verhandlungen International Limnologie (1975): 459-465. doi:10.1080/03680770.1974.11896085.
. “Benthic Metabolism Of Arctic Coastal Ponds, Barrow, Alaska: With 3 Figures And 2 Tables In The Text”. Sil Proceedings, 1922-2010 19. Sil Proceedings, 1922-2010 (1975): 459–465. doi:10.1080/03680770.1974.11896085.
. “Benthos As The Basis For Arctic Lake Food Webs”. Aquatic Ecology 37, no. 4. Aquatic Ecology (2003): 437-445. doi:10.1023/B:AECO.0000007042.09767.dd.
. .
“Bioavailability Of Dissolved Organic Carbon Across A Hillslope Chronosequence In The Kuparuk River Region, Alaska”. Soil Biology And Biochemistry 79. Soil Biology And Biochemistry (2014): 25-33. doi:10.1016/j.soilbio.2014.08.020.
. “Biodiversity, Distributions And Adaptations Of Arctic Species In The Context Of Environmental Change”. Ambio 33, no. 7. Ambio (2004): 404-417. doi:10.1579/0044-7447-33.7.404.
. “Biogenic Silica Accumulation Varies Across Tussock Tundra Plant Functional Type”. Functional Ecology 31, no. 11. Functional Ecology (2017): 2177 - 2187. doi:10.1111/1365-2435.12912.
. “Biogeochemical Cycling Of Methylmercury In Lakes And Tundra Watersheds Of Arctic Alaska”. Environmental Science And Technology 40, no. 4. Environmental Science And Technology (2006): 1204-1211. doi:10.1021/es051322b.
. “Biogeochemical Diversity Along A Riverside Toposequence In Arctic Alaska”. Ecological Monographs 61, no. 4. Ecological Monographs (1991): 415-435. doi:10.2307/2937049.
. “Biogeochemical Responses Over 37 Years To Manipulation Of Phosphorus Concentrations In An Arctic River: The Upper Kuparuk River Experiment”. Hydrological Processes 35. Hydrological Processes (2021). doi:10.1002/hyp.14075.
. “A Biogeochemical Survey Of Rivers And Streams In The Mountains And Foot-Hills Province Of Arctic Alaska”. Archiv Fur Hydrobiologie Beiheft 115. Archiv Fur Hydrobiologie Beiheft (1989): 499-521.
.