Bibliography
“The Balance Between Productivity And Food Web Structure In Soil Ecosystems”. In Biological Diversity And Function In Soils, 139-153. Biological Diversity And Function In Soils. Cambridge University Press, 2005. doi:10.1017/CBO9780511541926.009.
. “Cumulative Nitrogen Input Drives Species Loss In Terrestrial Ecosystems”. Global Ecology And Biogeography 20, no. 6. Global Ecology And Biogeography (2011): 803-816. doi:10.1111/j.1466-8238.2011.00652.x.
. “An Energetic Framework For Trophic Control”. In From Energetics To Ecosystems: The Dynamics And Structure Of Ecological Systems, 1:65-85. From Energetics To Ecosystems: The Dynamics And Structure Of Ecological Systems. Springer Netherlands, 2007. doi:10.1007/978-1-4020-5337-5_4.
. “Effects Of Fish Density And River Fertilization On Algal Standing Stocks, Invertebrate Communities, And Fish Production In An Arctic River”. Canadian Journal Of Fisheries And Aquatic Sciences 54, no. 2. Canadian Journal Of Fisheries And Aquatic Sciences (1997): 269-283. doi:10.1139/f96-268.
. “Whole River Fertilization Stimulates Fish Production In An Arctic Tundra River”. Canadian Journal Of Fisheries And Aquatic Sciences 49, no. 9. Canadian Journal Of Fisheries And Aquatic Sciences (1992): 1890-1901. doi:10.1139/F92-209.
. “Swimming Performance And Metabolism Of 0+ Year Thymallus Arcticus”. Journal Of Fish Biology 67. Journal Of Fish Biology (2005): 910–918. doi:10.1111/j.0022-1112.2005.00784.x.
. “Influence Of Environmental Variability On The Growth Of Age-0 And Adult Arctic Grayling”. Transactions Of The American Fisheries Society 128, no. 6. Transactions Of The American Fisheries Society (1999): 1163-1175. doi:10.1577/1548-8659(1999)128<1163:IOEVOT>2.0.CO;2.
. “Swimming Ability And Metabolism Of 0+ Arctic Grayling Thymallus Arcticus”. Journal Of Fish Biology 67, no. 4. Journal Of Fish Biology (2005): 910-918. doi:10.1111/j.0022-1112.2005.00784.x.
. “High Resolution Ch4 Emissions And Dissolved Ch4 Measurements Help Constrain Surface Gas Emission Dynamics In An Arctic Lake (Toolik Lake, Alaska)”. Aslo Aquatic Sciences Meeting. Aslo Aquatic Sciences Meeting. Portland, OR, 2014.
. “ Plant Soil Feedbacks With Changing Vegetation Structure And Composition In A Warming Arctic”. Botany. Botany. University of Florida, 2011.
. “Long-Term Experimental Warming And Nutrient Additions Increase Productivity In Tall Deciduous Shrub Tundra”. Ecosphere 6, no. 5. Ecosphere (2014): Article 72. doi:10.1890/es13-00281.1.
. “Effects Of Arctic Shrub Expansion On Biophysical Vs. Biogeochemical Drivers Of Litter Decomposition”. Ecology 95, no. 7. Ecology (2014): 1861-1875. doi:10.1890/13-2221.1.
. “The Effects Of Snow, Soil Microenvironment, And Soil Organic Matter Quality On N Availability In Three Alaskan Arctic Plant Communities”. Ecosystems 14, no. 5. Ecosystems (2011): 804-817. doi:10.1007/s10021-011-9447-5.
. “Modeling Snowcover Hyeterogeneity Over Complex Terrain For Regional And Global Climate Models”. Journal Of Hydrometeorology 5. Journal Of Hydrometeorology (2004): 33-48. doi:10.1175/1525-7541(2004)005%3C0033:MSHOCA%3E2.0.CO;2.
. “The Water Budget Of The Kuparuk Basin, Alaska”. Journal Of Hydrometeorology 6, no. 5. Journal Of Hydrometeorology (2005): 633-655. doi:10.1175/JHM434.1.
. “Characteristics And Trends Of River Discharge, Into Hudson, James, And Ungava Bays, 1964 - 1994”. Journal Of Climate 18, no. 14. Journal Of Climate (2005): 2540-2557. doi:10.1175/JCLI3440.1.
. “A Note On Surface Humidity Measurements In The Cold Canadian Environment”. Boundary Layer Meteorology 102. Boundary Layer Meteorology (2002): 491-497. doi:10.1023/A:1013890729982.
. “An Approach To Using Snow Areal Depletion Curves Inferred From Modis And Its Application For Land Surface Modelling In Alaska”. Hydrological Processes 19, no. 14. Hydrological Processes (2005): 1755-2774. doi:10.1002/hyp.5784.
. “Oxygen Dynamics In Permafrost Thaw Lakes: Anaerobic Bioreactors In The Canadian Subarctic”. Limnology And Oceanography 60, no. 5. Limnology And Oceanography (2015): 1656-1670. doi:10.1002/lno.10126.
. “Below-Ground Carbon Transfer Among Betula Nana May Increase With Warming In Arctic Tundra”. New Phytologist 192, no. 3. New Phytologist (2011): 689-698. doi:10.1111/j.1469-8137.2011.03835.x.
. “Long-Term Warming Alters The Composition Of Arctic Soil Microbial Communities”. Fems Microbiol Ecol 82, no. 2. Fems Microbiol Ecol (2012): 303-15. doi:10.1111/j.1574-6941.2012.01350.x.
. “Long-Term Experimental Manipulation Of Climate Alters The Ectomycorrhizal Community Of Betula Nana In Arctic Tundra”. Global Change Biology 17, no. 4. Global Change Biology (2011): 1625-1636. doi:10.1111/j.1365-2486.2010.02318.x.
. “Linking Functional Diversity And Social Actor Strategies In A Framework For Interdisciplinary Analysis Of Nature's Benefits To Society”. Proceedings Of The National Academy Of Sciences 108, no. 3. Proceedings Of The National Academy Of Sciences (2011): 895-902. doi:10.1073/pnas.1017993108.
. “Linking Functional Diversity And Social Actor Strategies In A Framework For Interdisciplinary Analysis Of Nature’s Benefits To Society”. Proceedings Of The National Academy Of Sciences 108. Proceedings Of The National Academy Of Sciences (2011): 895–902. doi:10.1073/pnas.1017993108.
.