Bibliography
“Synchrony And Seasonality In Bacterioplankton Communities Of Two Temperate Rivers”. Limnology And Oceanography 50, no. 6. Limnology And Oceanography (2005): 1718-1729. doi:10.4319/lo.2005.50.6.1718.
. “Swimming Ability And Metabolism Of 0+ Arctic Grayling Thymallus Arcticus”. Journal Of Fish Biology 67, no. 4. Journal Of Fish Biology (2005): 910-918. doi:10.1111/j.0022-1112.2005.00784.x.
. “Surface Exposure To Sunlight Stimulates Co2 Release From Permafrost Soil Carbon In The Arctic”. Proceedings Of The National Academy Of Sciences 110, no. 9. Proceedings Of The National Academy Of Sciences (2013): 3429-3434. doi:10.1073/pnas.1214104110.
. “Sunlight Controls Water Column Processing Of Carbon In Arctic Freshwaters”. Science 345, no. 6199. Science (2014): 925-928. doi:10.1126/science.1253119.
. “Summer Thaw Duration Is A Strong Predictor Of The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”. Environmental Microbiology 24, no. 12. Environmental Microbiology (2022): 6220 - 6237. doi:10.1111/1462-2920.16218.
. “Summer Population Fluctuations, Feeding, And Growth Of Hydra In An Arctic Lake”. Limnology And Oceanography 26, no. 4. Limnology And Oceanography (1981): 697-708. doi:10.4319/lo.1981.26.4.0697.
. “Study Of The Inter-Annual Food Web Dynamics In The Kuparuk River With A First Order Approximation Inverse Model”. Ecological Modelling 211, no. 1-2. Ecological Modelling (2008): 97-112. doi:10.1016/j.ecolmodel.2007.08.022.
. “Structural Asymmetry And The Stability Of Diverse Food Webs”. Nature 442. Nature (2006): 265-269. doi:10.1038/nature04887.
. “Stream Insect Occupancy-Frequency Patterns And Metapopulation Structure”. Oecologia 151, no. 2. Oecologia (2007): 313-321. doi:10.1007/s00442-006-0596-8.
. “Stream Geochemistry As An Indicator Of Increasing Permafrost Thaw Depth In An Arctic Watershed”. Chemical Geology 273, no. 1–2. Chemical Geology (2010): 76-81. doi:10.1016/j.chemgeo.2010.02.013.
. “Stream Dissolved Organic Matter In Permafrost Regions Shows Surprising Compositional Similarities But Negative Priming And Nutrient Effects”. Global Biogeochemical Cycles 35. Global Biogeochemical Cycles (2021). doi:10.1029/2020gb006719.
. “Stable Isotopes Resolve The Drift Paradox For Baetis Mayflies In An Arctic River”. Ecology 74, no. 8. Ecology (1993): 2315-2325. doi:10.2307/1939584.
. “Stable Isotopes And Radiocarbon Assess Variable Importance Of Plants And Fungi In Diets Of Arctic Ground Squirrels”. Arctic, Antarctic, And Alpine Research 49, no. 3. Arctic, Antarctic, And Alpine Research (2017): 487 - 500. doi:10.1657/AAAR0016-062.
. “Stable Isotopes And Planktonic Trophic Structure In Arctic Lakes”. Ecology 73, no. 2. Ecology (1992): 561-566. doi:10.2307/1940762.
. “Stable Isotope Signatures Of Benthic Invertebrates In Arctic Lakes Indicate Limited Coupling To Pelagic Production”. Limnology And Oceanography 51, no. 1. Limnology And Oceanography (2006): 177-188. doi:10.4319/lo.2006.51.1.0177.
. “Stable Isotope Diagrams Of Freshwater Food Webs”. Ecology 72, no. 6. Ecology (1991): 2293-2297. doi:10.2307/1941580.
. “Spring Photosynthetic Onset And Net Co 2 Uptake In Alaska Triggered By Landscape Thawing”. Global Change Biology 24. Global Change Biology (2018): 3416 - 3435. doi:10.1111/gcb.14283.
. “Sporadic P Limitation Constrains Microbial Growth And Facilitates Som Accumulation In The Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil Model”. Soil Biology And Biochemistry 165. Soil Biology And Biochemistry (2022): 108489. doi:10.1016/j.soilbio.2021.108489.
. “Spectral Indices For Remote Sensing Of Phytomass, Deciduous Shrubs, And Productivity In Alaskan Arctic Tundra”. International Journal Of Remote Sensing 36, no. 17. International Journal Of Remote Sensing (2015): 4344 - 4362. doi:10.1080/01431161.2015.1080878.
. “Species Responses To Nitrogen Fertilization In Herbaceous Plant Communities, And Associated Species Traits”. Ecological Archives 89, no. 4. Ecological Archives (2008): 1175. doi:10.1890/07-1104.1.
. “Species Diversity Along Nutrient Gradients: An Analysis Of Resource Competition In Model Ecosystems”. Ecosystems 7, no. 3. Ecosystems (2004): 296-310. doi:10.1007/s10021-003-0233-x.
. “Species Compositional Differences On Different-Aged Glacial Landscapes Drive Contrasting Responses Of Tundra To Nutrient Addition”. Journal Of Ecology 93. Journal Of Ecology (2005): 770-782. doi:10.1111/j.1365-2745.2005.01006.x.
. “Species Composition Interacts With Fertilizer To Control Long-Term Change In Tundra Productivity”. Ecology 82, no. 11. Ecology (2001): 3163-3181. doi:10.1890/0012-9658%282001%29082%5B3163%3ASCIWFT%5D2.0.CO%3B2.
. “Spatiotemporal Patterns Of Tundra Fires: Late-Quaternary Charcoal Records From Alaska”. Biogeosciences 12. Biogeosciences (2015): 3177-3209. doi:10.5194/bgd-12-3177-2015.
. “Spatial Variation Among Lakes Within Landscapes: Ecological Organization Along Lake Chains”. Ecosystems 2, no. 5. Ecosystems (1999): 395-410. doi:10.1007/s100219900089.
.