Bonnie Kwiatkowski

ORCID ID: 

https://orcid.org/0000-0003-0158-9753

Name: 

Bonnie Kwiatkowski

Role: 

Other Professional

Address: 

Ecosystems Center - MBL
7 MBL St.
Woods Hole, MA 02543
United States

Email: 

Recent Publications

Data Sets

Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation J - doubled Phase II decomposition
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Undisturbed tussock tundra
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation H - increased N and P deposition
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation B - increased Phase I soil organic matter
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation F - increased N deposition
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation D - reduced Phase I and Phase II soil organic matter
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event: saturating nutrients.
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation E - reduced Phase I soil organic matter
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation C - increased Phase I and Phase II soil organic matter
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation G - increased P deposition
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation A - increased Phase II soil organic matter
The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change, output from MBLGEMIII for typical tussock-tundra hill slope near Toolik Field Station, Alaska.
Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation I - doubled Phase I decomposition