inorganic nutrients

Abstract
Gaius Shaver, 2022 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2015, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c733e2d9526616a20711f3856840344a
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen and phosphorous summaries for control and fertilized plots.
Changing Seasonality and Arctic Stream Networks
Abstract
William "Breck" Bowden, 2013 CSASN TASCC Nutrient additions to streams near Toolik Field Sation, Alaska 2010 to 2012. 10.6073/pasta/a4716dc93844548b60384a899a23e794
The Changing Seasonality of Artic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location.
William "Breck" Bowden, 2013 CSASN Well and Mini-piezomenter Samples. 10.6073/pasta/3597abe9989139bccab4d0d0b51367f0
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, well and mini-piezometer samples were collected from various depths near stream channels and analyzed for a variety of nutrients.
William "Breck" Bowden, 2013 CSASN Channel Nutrients from 2010 to 2012 in I8 Inlet, I8 Outlet, Peat Inlet and Kuparuk Rivers. 10.6073/pasta/d19adb5a8fe01f67806e5afccf283b52
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, background samples were collected from four stream channels and analyzed for a variety of nutrients.
William "Breck" Bowden, 2013 CSASN Nutients: Tracer addition for spiraling curve characterization from 2010 to 2012. 10.6073/pasta/1a99d8b18f6311f5047665cd7c756512
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location.
William "Breck" Bowden, 2013 Nutrient and tracer amounts for Tracer Additions for Spiraling Curve Characterization studies on arctic streams near Toolik Field Station, Alaska 2010 -2012.. 10.6073/pasta/6b0e4feffc9bf3cc093dd668496d5d1b
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of tracer addition for spiraling curve characterization (TASCC) and Plateau nutrient additions at each sampling location.
data
Abstract
Jay Zarnetske, 2020 High-frequency dissolved organic carbon and nitrate from the Kuparuk River outlet near Toolik Field Station, Alaska, summer 2017-2019. 10.6073/pasta/990958760c13cdd55b574c5202dc19b7
Data file describing
Jay Zarnetske, William "Breck" Bowden, Benjamin Abbot, 2020 High-frequency dissolved organic carbon and nitrate from the Oksrukuyik Creek outlet near Toolik Field Station,Alaska, summer 2017-2019 . 10.6073/pasta/5d63c098887205597ce0df929467168c
Data file describing high frequency (every ~10 minutes), optial sensor-derived chemistry of river water from Oksukuyik Creek near Toolik Field Station, North Slope of Alaska. Data file includes date, time, dissolved organic carbon (DOC) concentration, and nitrate concentration. Sensors (V2 s::can uv-vis spectrophotometers) were continuously deployed from June through August or September and optically determined nitrate and dissolved organic carbon concentrations.
Jay Zarnetske, William "Breck" Bowden, Benjamin Abbot, 2020 High-frequency dissolved organic carbon and nitrate from the Trevor Creek outlet near Toolik Field Station, Alaska, summer 2017-2019. 10.6073/pasta/3bd6a1d2d9487546f32d46d2943c6e43
Data file describing high frequency (every ~10 minutes), optial sensor-derived chemistry of river water from Trevor Creek near Toolik Field Station, North Slope of Alaska. Data file includes date, time, dissolved organic carbon (DOC) concentration, and nitrate concentration. Sensors (V2 s::can uv-vis spectrophotometers) were continuously deployed from June through August or September and optically determined nitrate and dissolved organic carbon concentrations.
Benjamin Abbot, 2021 Repeated synoptic watershed chemistry from three watersheds near Toolik Field Station, Alaska, summer 2016-2018 . 10.6073/pasta/258a44fb9055163dd4dd4371b9dce945
Data file describing repeated sampling of chemistry of distributed river water from the Kuparuk River, Oksrukuyik Creek, and Trevor Creek watersheds near Toolik Field Station, North Slope of Alaska. Data file includes sampling date, season, sampling point, subcatchment area, and resulting concentrations for a suite of solutes.
Data Photo Coupled
Abstract
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Photo-oxidation and photomineralization apparent quantum yield dataset for dissolved organic carbon leached from permafrost soils collected from the North Slope of Alaska, July 2018.. 10.6073/pasta/201f8d4009eec890d937b177da9eb919
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic and then characterized for its photochemical properties.  Oxygen (O2) consumed from photo-oxidation of permafrost DOC was measured as a function of sunlight wavelength, defined as the apparent quantum yield spectrum of photo-oxidation (O2 consumed per mol photon absorbed by DOC).  Carbon dioxide (CO2) produced from photomineralization of permafrost DOC was measured as a function of sunlight wavelength, defined as the apparent quantum yield spectrum of photomineralization (CO2
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Radiocarbon and stable carbon isotopes of CO2 produced from photomineralization of DOC leached from permafrost soils collected from the North Slope of Alaska in the summer of 2018. 10.6073/pasta/ecf54f89183f7bbbb7bd5d931e7323f5
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic and then characterized for its photochemical properties.  The radiocarbon (14C) and stable carbon (13C) isotopic compositions of carbon dioxide (CO2) photochemically produced from permafrost DOC were quantified. 
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Preparation of DOC leachates from permafrost soils collected from the North Slope of Alaska in the summer of 2018. 10.6073/pasta/f35194d541f3b55fdd1778e2af52c676
Dissolved organic carbon (DOC) was leached from permafrost soils collected from the frozen permafrost layer at five sites underlying moist acidic tussock or wet sedge vegetation, and on three glacial surfaces on the North Slope of Alaska during summer 2018.
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Photomineralization apparent quantum yield at 309 nm for DOC leached from permafrost soils collected from the North Slope of Alaska in the summer of 2015. 10.6073/pasta/489bef4d2aa61e03bb77981605511b1d
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic and then characterized for its photochemical properties.  The apparent quantum yield of photomineralization (photochemical carbon dioxide, CO2, production) of permafrost DOC was quantified at 309 nm. 
Ecotypes Transplant Garden
Abstract
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Absorbed soil nutrients on ion exchange membranes in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2016. 10.6073/pasta/86225c3c1a98be0780d092f8b8bf9943
Transplant gardens at Toolik Lake and Sagwon were established in 2014.  At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SG, 69°25′26″N, 148°42′49″W) were transplanted. At the reciprocal transplant gardens, ion exchange membranes were used to measure nutrient availability over two time periods: Early season (June) and mid season (July). Membranes were deployed in the field for either 20 or 21 days, depending on travel constraints.
Terrestrial Biomass
Abstract
Mathew Williams, Edward Rastetter, 1999 Measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, summer 1997, North Slope, Alaska.. 10.6073/pasta/a5a4d4154e0a8181a5523b4d9c49ed99
1997 measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, North Slope, Alaska.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/5587a6f1bfc4f359c011139b2977d842
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER moist acidic tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER dry heath tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/447aec542efb8fd505b85f90c35ea47e
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER dry heath tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Donald Schell, 1990 Arctic LTER 1988: del 13C and del 15N ratios measurement for Eriophorum, Carex and lichen species in water tracks at Toolik and Imnavait Creek. 10.6073/pasta/d1771a19979f042e44a1813fe935c426
del 13C and del 15N ratios were measured for plant and lichen in watertracks in the Toolik Lake drainage and the east facing slope of the Imnavait Creek area. Sampling locations for each species for a specific date were chosen across an elevation gradient starting from the lakeside and leading to ridge crest. The vegetation was dried and analyzed for stable isotopes.
Sarah Hobbie, 2001 Foliar nutrients (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.. 10.6073/pasta/09cc986609a5494d901942b69cea037d
Foliar nutrients (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Sarah Hobbie, 2002 Foliar and litter nutrients and retranslocation efficiencies (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.. 10.6073/pasta/7904f91d28f2782b9ae473b0a6f7203c
Foliar and litter nutrients and retranslocation efficiencies (N, P, K, Ca, Mg) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Laura Gough, Sarah Hobbie, 2004 Above ground plant and belowground stem biomass in moist acidic and non-acidic tussock tundra experimental sites, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4195a17564c031686d5b95b551119fd5
Above ground plant and belowground stem biomass was measured in moist acidic and non-acidic tussock tundra experimental sites. Treatments sampled were control plots and plots amended with nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Percent carbon, percent nitrogen, del13C and del15N of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/bdb3eeabb3b26075f0841440e8f92d3a
Percent carbon, percent nitrogen, del13C and del15N were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2000lgshttbm.dat.
Gaius Shaver, 1996 June and August plant biomass in mesic acidic tussock tundra, 1992, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/e4c9bbe7ff8627cf706780e48aa3462a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass. Two harvests were completed, June and a late July. These are control plots from an experiment setup for a 15N experiment.
Gaius Shaver, Terry Chapin, 1991 Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK, 1982.. 10.6073/pasta/77ca341a7c1f12d8303a99fc8563182f
Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK. .There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61, 1991 pp.1-31.
Gaius Shaver, 2004 Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. 10.6073/pasta/b3407bae411c523f4857753b09f620a0
Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. Treatments at each site included factorial NxP, greenhouse and shade house and were begun in 1985 (Sag site) or in 1988 (Toolik sites).
Gaius Shaver, 1990 Arctic LTER 1982: Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W).. 10.6073/pasta/c0d17c3371e88847208dbc0b35f2f8f5
Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1995 Early July plant biomass in mesic acidic tussock tundra, 1993, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/d72ed65f521fac34139850ef30bef72a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic acidic tussock tundra. Each quadrat was separated into individual species, new and old aboveground and belowground biomass. The harvest occurred in early July to coincide with a 15N plant and soil harvest.
Gaius Shaver, 2002 Leaf area for select species was measured in arctic tundra experimental sites from late June into early August,Toolik Field Sattion, Alaska, Arctic LTER 2000.. 10.6073/pasta/13915ef410067ef23bad0faff678319c
Leaf area for select species was measured in arctic tundra experimental sites from late June into early August. Measurements were made in acidic and non acidic tussock tundra and in shrub tundra in control and fertilized plots.
Gaius Shaver, 1989 Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W),1982.. 10.6073/pasta/06fd5df56a2d83c09df1d155479092d5
Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1990 Above ground biomass in acidic tussock tundra experimental site, 1989, Arctic LTER, Toolik, Alaska.. 10.6073/pasta/668dc98c3dbd83a308f0f38fb833f23e
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat.
Gaius Shaver, 1998 Plant biomass in heath tundra experimental plots, 1996, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4dcc09fd3ea2d757794d13c4727542aa
Plant biomass in arctic heath experimental plots. Plots set up in 1989 with nitrogen, phosphorus, nitrogen plus phosphorus and a shade treatment were harvested for above ground biomass. Root mass was also measured on a smaller subsample.
Gaius Shaver, 2001 Plant biomass in moist acidic tussock tundra experimental small mammal exclosures, 1999 Arctic LTER Toolik, Alaska.. 10.6073/pasta/3180bd090124c3a0d7a498e95685dfac
Above ground plant and below ground stem biomass was measured in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Leaf areas were also measured for each quadrat but are in a separate file.
Gaius Shaver, 1990 Seasonal plant biomass moist acidic tussock tundra, 1983, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/f15ef49234144987471d7a10d86d8bc3
Biomass in tussock tundra experimental plots near Toolik Lake, North Slope, AK (68 degrees 38N, 149derees 34W). There were five harvests in 1983. This file is the May 21-22, 1983 harvest.
Gaius Shaver, 1991 Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W), 1982.. 10.6073/pasta/5822d635c5094a1aa9aba29f0692ea49
Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). .There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1996 Plant biomass, leaf area, carbon, nitrogen, and phosphorus in wet sedge tundra, 1994, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/b68ff3f714e72e0528a2d72b2c04aafc
Plant biomass, leaf area, carbon, nitrogen, and phosphorus were measured in three wet sedge tundra experimental sites. Treatments at each site included factorial NxP and at the Toolik sites greenhouse and shade house. Treatments started in 1985 (Sag site) and in 1988 (Toolik sites).
Gaius Shaver, M. Syndonia Bret-Harte, 1998 Weights and lengths from retrospective growth analysis of different stem age classes of Betula nana, 1995, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/25e6539b3b55340d318a1a6befb82764
This data file contains the data on weights and lengths from retrospective growth analysis of different stem age classes of Betula nana ramets from the LTER Nutrient and Warming manipulations in tussock tundra at Toolik Lake.
Gaius Shaver, 2002 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/24261b22fbd2ebb6bd203ceece4b8859
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for control and fertilized plots. Leaf area data is in 2000gsttLA
Gaius Shaver, 2006 Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c3ef07e6ed81c1fc33e9bc20aff07093
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.edu/arc).
Gaius Shaver, Yuriko Yano, 2009 Bulk concentration and isotopic information of plant C and N in green leaves and tissues collected from Imnavait watershed during 2003-2005. 10.6073/pasta/329191b51f7c934d72974eaf0f9bcff9
Changes in total C and N, d13C and d15N, C:N ratio in green leaves and parts of mosses (for sphagnum, both red and green tips were included) over time since 15NH4 addition in Imnavait watershed.
Gaius Shaver, 2005 Above ground plant and below ground stem biomass in the Arctic LTER acidic tussock tundra experimental plots, 2002, Toolik Lake, Alaska.. 10.6073/pasta/b227fa1d98ed466ea5fc3816ef5c8ba2
Above ground plant and below ground stem biomass was measured in the Arctic LTER acidic tussock tundra experimental plots. Treatments included control, nitrogen plus phosphorus amended plots for either 6 or 13 years and vole exclosure plots with or without amends of nitrogen and phosphorus.
Gaius Shaver, 1998 Above ground plant biomass and leaf area of moist acidic tussock tundra 1981 experimental site, Arctic LTER, Toolik Lake, Alaska.1995.. 10.6073/pasta/c8cc8ae964a9f9c68ffbf96cbb61e4e9
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61, 1991 pp.1-31).
Gaius Shaver, 2002 Plant leaf area in Arctic LTER tussock tundra experimental small mammal exclosures.. 10.6073/pasta/ad59eb7b05e4a22138a4d4c27b56f03b
Leaf areas were measured on quadrats harvested in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Biomass was also measured for each quadrat but is in a separate file.
Gaius Shaver, 1990 Above ground plant biomass a moist acidic tussock tundra experimental site, 1984, Acric LTER, Toolik Lake, Alaska.. 10.6073/pasta/08a91cb2697f7cdc82d654e82b53c5c5
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file is the July 26-27, 1984 harvest of the controls and nitrogen + phosphorus treatments.
Laura Gough, Sarah Hobbie, 2004 Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots, Toolik Field Station, Alaska, Arctic LTER 2000.. 10.6073/pasta/6e0b4ea291f4b5940b2b8b80af917bd5
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note:  Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus".  The tissues with 8 quadrats were "Greenhouse"  treatment.
Thermokarst Lakes
Abstract
George Kling, 2012 Chemistry from thermokarst impacted soils, lakes, and streams near Toolik Lake Alaska, 2008-2011.. 10.6073/pasta/2e55d1587290e642938ac1a6caed6ec6
This file contains data collected from thermokarst impacted soils, lakes, and streams near Toolik Lake Alaska. Data are also presented for experimental manipulations of water (e.g., time course experiments). Sample descriptors include a unique sortchem #, site, date, time, depth, distance, elevation, treatment, date-time, category, and water type (e.g., lake, surface, soil). Physical/chemical measures collected in the field include temperature, conductivity, and pH.
Landscape Interactions Chemistry
Abstract
George Kling, 2013 Biogeochemistry data set for soil waters, streams, and lakes near Toolik on the North Slope of Alaska.. 10.6073/pasta/574fd24522eee7a0c07fc260ccc0e2fa
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), elevation, treatment, date-time, category, and water type (lake, surface, soil). Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, average thaw depth, well height, discharge, stage height, and light (lakes).
George Kling, 2013 Biogeochemistry data set for soil waters, streams, and lakes near Toolik on the North Slope of Alaska, 2011.. 10.6073/pasta/362c8eeac5cad9a45288cf1b0d617ba7
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), elevation, treatment, date-time, category, and water type (lake, surface, soil). Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, average thaw depth, well height, discharge, stage height, and light (lakes).
George Kling, 2022 Biogeochemistry data set for soil waters, streams, and lakes near Toolik Lake on the North Slope of Alaska, 2012 through 2020. 10.6073/pasta/4e25db9ae9372f5339f2795792814845
Data file of the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska.  Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream from a reference location), elevation, treatment, date-time, category, and water type (lake, surface, soil).  Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, and average thaw depth in soil.  Chemical analyses for the sample include alkalinity; dissolved inorganic and organic carbon (DIC and DOC); dissolved gas
Streams Chemistry
Abstract
William "Breck" Bowden, 2020 Arctic LTER Streams Chemistry Toolik Field Station, Alaska 1978 to 2019.. 10.6073/pasta/3faacd18b63b3bacc5a0dbd6f09660e1
Since 1983, the Streams Project at the Toolik Field Station has monitored physical, chemical, and biological parameters in a 5-km, fourth-order reach of the Kuparuk River near its intersection with the Dalton Highway and the Trans-Alaska Pipeline. In 1989, similar studies were begun on a 3.5-km, third-order reach of a second stream, Oksrukuyik Creek.
Terrestrial Plant Communities and Plant Species List
Abstract
Jennie McLaren, 2018 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013. . 10.6073/pasta/8a2999c9ed297a184aaca7057e1ae177
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra. 
lakes chemistry
Abstract
Anne Giblin, George Kling, 1991 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.. 10.6073/pasta/8db9af4d3fc6f66b200c26cc0256b7f8
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Anne Giblin, George Kling, 2001 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.. 10.6073/pasta/c964a186ed5a58270602ea44f8c3927b
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Anne Giblin, George Kling, 2022 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2021. 10.6073/pasta/aacb658c4a0d343c02e88f825bb32934
Note: Corrections were made to Particulate phosphorus values. See version 5 notes.
Anne Giblin, George Kling, 1985 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.. 10.6073/pasta/7d30ceaaf64ac5e6bf6a336c17e3ffb1
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Terrestrial Plant Phenological and Growth Data
Abstract
Jennie McLaren, 2021 Relative percent cover and leaf nutrients was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acid tundra, Arctic LTER Toolik Field Station, Alaska 2015. 10.6073/pasta/1c57b6613111c9d05c0225de12fd1098
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra

in greenhouse and control plots. Leaf percent carbon, percent nitrogen and percent phosphorus were collected from dominant species in greenhouse and control plots

on Arctic LTER experimental plots at Toolik field station in moist acidic, non-acidic tundra, wet sedge and shrub

tundra
Thermokarst Streams
Abstract
William "Breck" Bowden, 2014 ARCSS/TK water chemistry and epilithon characterization from the Noatak National Preserve, Kelly River region (2010) and Feniak Lake region (2011).. 10.6073/pasta/39ed7afdfd1ad36019bd3b02c64d1bd1
These data are from two remote field campaigns in the Noatak National Preserve. Various thermokarst features and their receiving streams were sampled and characterized. A suite of water chemistry (nutrients, major anions and cations, total suspended sediment) and benthic variables (particulate carbon, nitrogen and phosphorus, and chlorophyll-a) were measured at 6 major sites (2 in 2010 and 4 in 2011). There were additional sites sampled for water chemistry above and below thermokarst features in 2011.
William "Breck" Bowden, 2014 ARCSS/TK water chemistry and total suspended sediment data from I-Minus2 and Toolik River thermokarsts and receiving streams, near Toolik Field Station, Alaska, summers 2006-2013.. 10.6073/pasta/36446317e7682f1b03c0f7def5b16fcc
Water samples were taken at 5 locations at both I-Minus2 and Toolik River thermokarst sites (10 sampling locations total). A combination of ISCO and manual grab samples were taken depending on the sampling location and year.
Lakes Isotopes
Abstract
George Kling, Christopher Luecke, 2007 Concentration of dissolved inorganic carbon (DIC), carbon and nitrogen concentrations, C:N ratios and del 13C isotope value for lakes and rivers on North Slope from Brooks Range to Prudhoe Bay, Arctic LTER 1988 to 2005. 10.6073/pasta/6341694e9d7155735d17da7001014e18
Composite file describing plant, animal, water, and sediment samples collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number specific to the file, a number that relates the samples to other samples collected on the same date and time (sortchem), site, date, time, and depth. Samples are identified by type, category, and a short description. Data include isotope values, carbon and nitrogen concentrations, and C:N ratios of samples.
Lakes Physical and Chemical Parameters
Abstract
Anne Giblin, George Kling, 2022 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1975 to 1989.. 10.6073/pasta/588e78d0d92ee947349eda23402543f6
Decadal file describing the physical lake parameters recorded at various lakes near Toolik Research Station during summers from 1975 to 1989. Depth profiles at the sites of physical measures were collected in situ. Values measured included temperature, conductivity, pH, dissolved oxygen, Chlorophyll A, Secchi disk depth and PAR. Note that some sample depths also have additional parameters measured and available in separate files for water chemistry and primary production.
Anne Giblin, Christopher Luecke, George Kling, 2010 Average Epilimnetic Conductivity from 1992 to present in Tooli Lake, Arctic LTER, Alaska.. 10.6073/pasta/f0b996fef22d56cacd87f60f5dea2cd9
Average conductivity of the epilimnion (0-3m of water depth) found in Toolik Lake during the month of July.
Anne Giblin, George Kling, 2001 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009. 10.6073/pasta/791e3cb6288f75f602f23ef3e5532017
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 2000 to 2009. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 1991 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999. 10.6073/pasta/1fd85582de93a281e5e5d3b80df97b52
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 1990 to 1999. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 2021 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2021. 10.6073/pasta/76ae1339a928d85193eb15bbe88cee75
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Cody Johnson, George Kling, Anne Giblin, 2011 Sedimentation rate, concentration of macronutrients and flux for NE14, Toolik, Dimple, Perched during Summer 2009.. 10.6073/pasta/e2db8161be27bdbdcd398b0290f63f39
We measured the flux of bulk material and major macronutrients (carbon, nitrogen and phosphorus) from the water column to the benthos in four separate lakes during the summer of 2009. The lakes were chosen to investigate the impacts of disturbance on lake sedimentation. Two of the lakes, Dimple and Perched, were within catchments that were burned by the 2007 Anaktuvuk River wildfire. Two of the lakes, NE-14 and Perched, were receiving elevated sediment loads from thermokarst failures on their shorelines, and Toolik Lake was used as a reference lake.
Terrestrial Precipitation Chemistry
Abstract
Gaius Shaver, 2006 Bulk precipitation collected during summer months on a per rain event basis at Toolik Field Station, North Slope of Alaska, Arctic LTER 1988 to 2007.. 10.6073/pasta/410d11b9f95caf846e5fb6959145a4de
Bulk precipitation was collected during summer months (June, July and August) on a per rain event basis at the University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W). Analysis of pH, NH4-N and phosphorus were performed at the field station. NO3-N were frozen and analyzed in Woods Hole, MA
Gaius Shaver, 2006 Precipitation cations and anions for June, July and August from a wet/dry precipitation, University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W), Arctic LTER 1989 to 2003. 10.6073/pasta/d59fb55e6934f4f90bd652399a2e76f8
Precipitation, collected from a wet/dry precipitation collector located near University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W) was sent out for standardized EPA rain water analysis. Nutrient chemistry was also run on a sub sample at the field station.
Gaius Shaver, 2004 Inorganic Nitrogen and phosphorus were analyzed on snow samples taken from two snow pits near the long-term acrtic LTER mesic acidic tussock experimental plots Toolik Field Station 2003. 10.6073/pasta/dd5fc68975ac6158633ccf11c91aa1c7
Inorganic Nitrogen and phosphorus were analyzed on snow samples taken from two snow pits near the long-term acrtic LTER mesic acidic tussock experimental plots. The snow layers in each pit were described and sampled separtely with the help of Matthrew Sturm.
Terrestrial
Abstract
Gaius Shaver, Yuriko Yano, 2009 water chemistry of Imnavait watershed during 2002-2004. 10.6073/pasta/6a2e2065b9039335ac7a2b229204ecd6
Water chemistry (NO3, NH4, TDN, DON, DOC) from Imnavait watershed along hillslope. Sample waters were either collected by lysimeters, needle with syringe, or extracting soil with water or 1N KCl.
Gaius Shaver, Yuriko Yano, 2006 NO3 and NH4 collected by resin bags in 15N addition plots during 2003-2004. 10.6073/pasta/c98aee0d4a8c4023107c26588e6227d5
Concentrations of NO3 and NH4 and d15N of NO3 and NH4 collected on resin bags from 15N addition plots along hillslope in Imnavait watershed.
Laura Gough, Sarah Hobbie, 2005 Percent carbon and percent nitrogen of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/75de62f9de5e22e63a76c8b48b99cf2b
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Terrestrial Soil Properties
Abstract
Donald Schell, 1993 Arctic LTER 1991: Percent moisture, bulk density, percent loss on ignition and percent organic carbon were measured for peat collected from soils in the Imnavait Creek watershed.. 10.6073/pasta/027e46f118de965c56f556b76518c06f
Percent moisture, bulk density, percent loss on ignition and percent organic carbon were measured for peat collected from soils in the Imnavait Creek watershed.
Sarah Hobbie, 2000 Total soil cations (Al, Ca, K, Mg, Na, P) for intertussock O and B horizon soils on moist acidic and non-acidic tundra, Arctic LTER 1997.. 10.6073/pasta/15beb235b15c465291bbff83e1fce5c3
Total soil cations (Al, Ca, K, Mg, Na, P) for intertussock O and B horizon soils on moist acidic and non-acidic tundra.
Sarah Hobbie, 2000 Extractable soil cations (K, Ca, Mg, Na) for intertussock O and B horizon soils on moist acidic and non-acidic tundra, Arctic LTER 1997.. 10.6073/pasta/f9f9b49cb92a94f687328ed1a7ca76cb
Extractable soil cations (K, Ca, Mg, Na) for intertussock O and B horizon soils on moist acidic and non-acidic tundra.
Jennie DeMarco, Michelle Mack, 2009 Net nitrogen mineralization from shrub gradient and snow manipulations, near Toolik field station, collect in the summer of 2006 and winter of 2006-2007. 10.6073/pasta/d63fe4fe5d2725aaa8732f1ae6548028
In arctic tundra, near Toolik Lake, Alaska, we quantified net N-mineralization rates under ambient and manipulated snow treatments at three different plant communities that varied in abundance and height of deciduous shrubs.
Laura Gough, 2000 Plant available NH4, NO3, and PO4 was determined at three site (LTER Toolik acidic and nonacidic tundra and Sagwon acidic tundra) and three community combinations (tussock, watertrack, and snowbed) Arctic LTER 1997.. 10.6073/pasta/b5f5ca168b82ffc3db6522a489a90c7f
Plant available NH4, NO3, and PO4 was determined at three site (LTER Toolik acidic tundra, LTER Toolik nonacidic tundra, and Sagwon acidic tundra) and three community combinations (tussock, watertrack, and snowbed), three times during the season. pH was also determined in July and strong acid phosphorous in August.
Gaius Shaver, 1993 Extractable NH4-N and NO3-N (2 N KCl), PO4-P (0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a transect along the Dalton road, Arctic LTER 1991.. 10.6073/pasta/d2fc50cac67c6ae3659500e1baa2d3a9
Extractable NH4-N and NO3-N (2 N KCl), PO4-P

(0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a

transect along the Dalton road. Sites are Gus Shaver flowering sites and

Arctic LTER sites.
Gaius Shaver, 2005 Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts, Arctic LTER 1987 to 2002. 10.6073/pasta/48fd52a09bf83e6c6bcecb49b48e9358
Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts. This file complies data collected at different times from 1987 through 2001 and includes initial extracts taken for buried bag method of net nitrogen mineralization.
Gaius Shaver, Yuriko Yano, 2009 Chloroform-extractableN and d15N within 15N addition plots for Aug 2003. 10.6073/pasta/3afcfb4b01223d351944947a7881a2d6
Pool size and d15N values for chloroform-extractable N, extractable-N, and non-extractable N pools. Samples collected in Aug. 2003 from 1st Organic Layer of 15N addition plots in Imnavait watershed.

1st Organic Layer = the upper 10 cm of organic soil or, if the organic layer was < 10 cm thick, the entire layer (e.g., there was never > 4 cm of organic soil at Crest).
Gaius Shaver, Yuriko Yano, 2009 Pool size and 15N atom % of nydrolyzable N in natural and enriched soils in Imnavait watershed. 10.6073/pasta/ed169ed557beac4c5b7ba410439d8595
Hydrolyzable N pool size and 15N atom % of natural and enriched soils collected from Imnavait watershed in summer of 2005.
Gaius Shaver, Yuriko Yano, 2009 physical and chemical information for soil cores from Imnavait watershed during 2003-2005. 10.6073/pasta/55038942444330ec87fbf0eaac4a2a75
Physical (bulk density, soil thickness) and chemical (total C and N, d13C and d15N) information of soil cores taken from 15N addition plots in Imnavait watershed.
Knute Nadelhoffer, Anne Giblin, 1995 Carbon, nitrogen and phosphorus content in the seasonally thawed soils are described for four arctic tundra vegetation types located near the Toolik Field Station, Arctic LTER 1993.. 10.6073/pasta/84ab340d21f16f18976b850d92923a50
Carbon, nitrogen and phosphorus content in thawed soils are described for four arctic tundra vegetation types located near the Toolik Field Station.
Gaius Shaver, 2006 Nitrogen mineralization was determined on Arctic LTERToolik and Sag River tussock tundra using the buried bag method, Toolik Field Station, Alaska, Arctic LTER 1989-2013.. 10.6073/pasta/79e01a508bb9021e265eec2a8201b2f9
Nitrogen mineralization was determined on LTER and Sag River tussock tundra using the buried bag method. Yearly bags have been deployed every August since 1990.
Jennie McLaren, 2018 Multiple biogeochemical variables were measured for organic and mineral soils on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013.. 10.6073/pasta/2302b3a5eab56970aa4e4f71d36b7fce
Measures of soil nutrient content (available N and P, Extractable N and P, Total C, N and P), and microbial biomass and activity (exoenzyme activity) were measured for organic and mineral soils on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra (organic soils only). 
Jennie McLaren, 2019 Soil biogeochemical variables collected on the Arctic Long Term Ecological Research (ARC LTER) experimental plots in moist acidic and dry heath tundra, Arctic LTER Toolik Field Station, Alaska 2017. 10.6073/pasta/5a5cbb785bde48522bde7b87c65d3c13
Soil nutrients (
Jennie McLaren, 2021 Soil biogeochemical variables collected on the Arctic LTER experimental plots in moist acidic, moist non-acidic, wet shrub and shrub tundra, Arctic LTER Toolik Field Station, Alaska 2015. 10.6073/pasta/d4f567844673857239eec0cb61c6f543
We investigated the effect of long-term warming on multiple soil and microbial carbon, nitrogen, and phosphorus pools, and microbial extracellular enzyme activities, with a particular focus on phosphorus, in Alaskan tundra plots underlain by permafrost
Terrestrial Trace Gases
Abstract
Gaius Shaver, 2007 Percent C, Percent N and C:N ratio for leaf samples from ITEX flux survey plots for 2003-2004, Toolik Alaska.. 10.6073/pasta/92831adcff93794392ee20a4a32d5570
Foliar carbon and nitrogen concentrations of the dominant species from within the ITEX flux survey plots 2003-2004. Plots were located in the Toolik Lake LTER moist acidic tussock experiment plots in Alaska; at Imnavait Creek, Alaska.
Gaius Shaver, 2010 Leaf area, biomass, carbon and nitrogen content by species for harvests taken as part of the ITEX flux survey.. 10.6073/pasta/74407ca602bf8944e5152f7a74203ac4
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland, and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Gaius Shaver, 2010 NDVI, leaf area index and total foliar N of harvests taken during the ITEX flux survey. 10.6073/pasta/95095cb096b2e977e6bb8658b021c76e
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Gaius Shaver, 2013 Percent carbon and nitrogen of leaves from shoots harvested at three levels in the canopy from 19 plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/6e98f40b0cd7e611f62494b68a938244
The percent carbon and nitrogen from leaves of shoots harvested from 1m x 1m point frame plots the summer of 2012 at Toolik Lake, Alaska. were measured on a ThermoScientific 2000. For each point frame plot, six shoots were harvested from upper, middle, and low sections of the canopy. The photosynthetic capacity of each shoot was analyzed with a LiCor 6400 infra-red gas analyzer by being run through a light response and A/Ci curve.
Weather
Abstract
Gaius Shaver, James A Laundre, 2021 Soil temperatures and moisture for Arctic Long Term Experimental Research (ARC LTER) heath experimental plots, Toolik Field Station, North Slope Alaska for 2001-2018. . 10.6073/pasta/5bec91673a0bd177777381b490247241
Soil temperatures at 2 depths, 5 and 10 cm, canopy temperatures and soil moisture at 10 cm were measured in a heath tundra Arctic Long Term Experimental Research (ARC-LTER) site at Toolik Lake Field Station, North slope, Alaska. Air temperature and relative humidity and global radiation were also measured but are presented in another dataset. Only control and nutrient addition (nitrogen plus phosphorus ) treatments plots were measured .
CSV
Subscribe to inorganic nutrients