Salix glauca

Plant biomass, production and chemistry measurements near Toolik Lake, Alaska for moist tundra, wet sedge, tall shrub, and dry heath. Some harvests include total nitrogen and phosphorus.

Terrestrial Biomass
Abstract
Gaius Shaver, Laura Gough, 1999 Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra and nonacidic tundra near Arctic LTER Toolik Plots and acidic tundra near Sagwon,Arctic LTER 1997.. 10.6073/pasta/cf45e059c576273ec58ce24769793f28
Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. All vascular species were sorted, divided into new and old growth, dried, and weighed. Lichens were separated by genus in all quadrats. In half of the quadrats (n=4), mosses were separated by species. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen.txt).
Gaius Shaver, 1989 Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W),1982.. 10.6073/pasta/06fd5df56a2d83c09df1d155479092d5
Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Terrestrial Plant Communities and Plant Species List
Abstract
Laura Gough, 2013 2011 relative percent cover of plant species in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.. 10.6073/pasta/ac0b52cfafad29a666c71299fc6085b7
In 2011, relative percent cover of plant species was measured in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
Laura Gough, 2012 2010 relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; and in new experimental plots established in 2006.. 10.6073/pasta/9a838fd30e3fdde2ea9acba37afb2bfa
In 2010, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2010 Relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; in new experimental plots established in 2006; and for Sagavanirktok River plots in tussock and heath tundra, Norht Slope Alaska 2008.. 10.6073/pasta/1553e86b8f7ebcc03b757fccc17cc13f
In 2008, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Arctic 2006: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra.. 10.6073/pasta/7b0a8419c87c05ec1fe4fb708902d428
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra, North Slope Alaska 2004.. 10.6073/pasta/30f0822d9a7d4e2980300052a67e60b1
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2001 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.. 10.6073/pasta/d780d20c2fbee479d46c0f99fcf26c9a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.
Laura Gough, 2007 Arctic LTER 2005: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, moist non-acidic and dry heath tundra.. 10.6073/pasta/c7344c7f8af925285bfb25632c545649
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra.
Laura Gough, 2003 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska 2002. 10.6073/pasta/2185fb606bfb9e55d50e4fe670c6298a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Laura Gough, 2004 Arctic LTER 2001: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/d0eff382d7c0564df5e5524e4a4e65a9
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Laura Gough, 2002 Arctic LTER 2000: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/b9cc1f0f4215535754a4acd8e29bfc0c
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Jennie McLaren, 2018 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013. . 10.6073/pasta/8a2999c9ed297a184aaca7057e1ae177
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra. 
Laura Gough, 2019 Relative percent cover of plant species for years 2013 2014 2016 2017 in LTER dry heath tundra experimental plots established in 1989, Arctic LTER Toolik, Field Station Alaska. 10.6073/pasta/25d3f0db55e9df6f99fc3e9596433090
Relative percent cover of plant species was measured in Arctic Long-Term Ecological Research (ARC-LTER) Dry Heath experimental plots. Treatments include Nitrogen Phosphorus (NP), and Control (CT), Nitrogen Phosphorus Unfenced (NFNP), Nitrogen Phosphorus Small Fenced (SFNP), Nitrogen Phosphorus Large Fenced (LFNP), Control (CT), Control Small Fenced (CTSF), and Control Large Fenced (LFCT).
Terrestrial Soil Properties
Abstract
Jennie DeMarco, Michelle Mack, 2013 Mass, C, N, and lignin from litter decomposed across a shrub gradient and with snow manipulations near Toolik Field Station between 2003 and 2009.. 10.6073/pasta/badba3735996e3de4cd02ee4bd1cfd5c
In arctic tundra near Toolik Lake, Alaska, we incubated a common substrate in a snow addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated k values from our decomposition experiments to calculate community-weighted mass loss for each site.
Terrestrial Trace Gases
Abstract
Gaius Shaver, 2012 Raw pin-hit data from 19 1m x 1m point frame plots sampled near the LTER Shrub plots at Toolik Field Station in AK the summer of 2012.. 10.6073/pasta/59cbf45a4bb4a1997bc18f02a1100a64
This dataset includes every pin-hit recorded from 19 1m x 1m point frame plots of tall Betula nana and Salix pulchra canopies sampled at the Toolik Field Station, AK the summer of 2012. Twenty-five evenly spaced holes within the plot were sampled for each point frame for which the height and species was recorded for each leaf, stem, or plant that intersected the pin when lowered perpendicular to the ground. Non-woody species were grouped into functional groups (e.g. forb, graminoid, moss) and not identified to species.
Gaius Shaver, 2013 Maximum canopy height from 14 flux canopy and 19 point frame plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7b7fb8822b918e03c6803b6ba352894b
Maximum canopy height measurements for deciduous shrub canopies sampled for both 1m x 1mc hamber flux polots (n=14) and point frame plots (n=19) in the summer of 2012 near LTER shrub plots at Toolik Lake, AK. The canopies were dominated either by Salix pulchra or Betula nana species, and plot locations were preferentially selected for tall canopies (height > 75 cm). The methods for the chamber flux and point frames are outlined here briefly, though the data from these measurements are contained in separate files.
Gaius Shaver, 2013 Individual chamber flux measurements from 14 flux whole-canopy shrub plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/4b5f0a6ac4cd14e233d7e7173fd40464
“Flux data” contains the CO2 and water flux data along with the corresponding diffuse light fraction at the time of measurement from the ITEX shrub canopy project taken at Toolik Lake, Alaska in 2012. Each record is a single LiCor flux measurement made with LiCor 6400 photosynthesis system, with associated average pressure, temperature, PAR, water vapor, and other data such as NDVI and LAI measurements taken with a DeltaT SunScan wand under both direct and diffuse light conditions.
Gaius Shaver, 2012 Summary of three different Leaf Area Index (LAI) methodologies of 19 1m x 1m point frame plots sampled near the LTER Shrub plots at Toolik Field Station in AK the summer of 2012.. 10.6073/pasta/d820beac421a90a6ea65b3b589537f66
Summary of three methods used to estimate the Leaf Area Index (LAI) of 19 1m x 1m plots sampled with a point frame near the LTER Shrub plots at the Toolik Field Station in AK the summer of 2012. The methods used were: (1) exponential relationship between LAI and NDVI as measured above the canopy with a Unispec spetroradiometer; (2) Delta-T SunScan canopy analyzer held at 5 cm above the ground under both direct and diffuse light conditions; (3) pin-drop point frame tequnique. Where values have been averaged (such as for the NDVI and SunScan measurements), the standard deviation is given.
Gaius Shaver, 2012 Leaf Area Index every 15 cm of 1m x 1m chamber flux and point frame plots and sites where dataloggers monitored PAR above, within and below S. pulchra and B. nana canopies during the growing season at the Toolik Field Station in AK, Summer 2012.. 10.6073/pasta/627698983259d6963a6083d5251723cc
Leaf area index (LAI) measurements were taken with the Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. conditions The data includes all outputs from the SunScan wand: time of measurement, transmitted light, spread of PAR sensors, beam fraction, and zenith angle.
Gaius Shaver, 2013 Percent species cover from 14 flux canopy and 19 point frame 1m x 1m plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/cd9516d28ef5f7931ab108de3d5f7384
Total and individual subsample species percent cover data for all plots where flux or point frame measurements were made in 2012 IVO the LTER Shrub vegetation plots at Toolik Field Station. All plots sampled were dominated either by B. nana or S. pulchra canopies. Cover estimates were made for the five most dominate functional groups using a 1m x 1m grid with 20cm2 blocks with each square representing four percent of the total area. Percentages represent absolute cover so do not sum to 100%.
Gaius Shaver, 2012 A/Ci curve parameters measured from shoots harvested at three levels in the canopy from 19 1m x 1m plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/1f1df6b91414fd96c0c4e0aa9933f43b
A/Ci curve parameters and modeled carboxylation, electron transport, and triose-phosphate utilization efficiency rates from shoots clipped from low, mid, and the top of tall, shrub canopies dominated either by Salix pulchra or Betula nana species. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy. These plots were located near the LTER shrub plots at the Toolik Field Staion, AK for point frame measurements, and all measurements took place the summer of 2012.
Gaius Shaver, 2013 Summary of soil temperature, moisture, and thaw depth for 14 chamber flux measurements sampled near LTER shrub sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7ccf390e6fe4824e93b7a2b844605a40
Soil temperature at 5cm and 10cm depth [°C], volumetric water content (VWC) [%] and depth of thaw [cm] for 14 shrub canopy flux plots measured in vicinity of the Toolik Field Station, AK in 2012.
Gaius Shaver, 2012 Light response curves measured from shoots harvested at three levels in the canopy from 19 1m x 1m plots dominated by S. pulchra or B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/427415da725d34c28540d03683f04900
This dataset contains light response curves and modeled light curve parameters from shoots clipped from low, mid, and the top parts of tall, shrub canopies dominated either by Salix pulchra or Betula nana. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy in plots located near the LTER shrub plots at Toolik Field Station, AK the summer of 2012. The species harvested were chosen based on the species present in each plot, thus the species from each segment of the canopy may not be the same.
Gaius Shaver, 2013 Percent carbon and nitrogen of leaves from shoots harvested at three levels in the canopy from 19 plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/6e98f40b0cd7e611f62494b68a938244
The percent carbon and nitrogen from leaves of shoots harvested from 1m x 1m point frame plots the summer of 2012 at Toolik Lake, Alaska. were measured on a ThermoScientific 2000. For each point frame plot, six shoots were harvested from upper, middle, and low sections of the canopy. The photosynthetic capacity of each shoot was analyzed with a LiCor 6400 infra-red gas analyzer by being run through a light response and A/Ci curve.
Gaius Shaver, 2013 Summary of measured and modeled light curve parameters for diffuse, direct, and intermediate light curves for 14 whole-canopy 1mx1m plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/4bc7067bbfad38c9368c522cf1bf633d
14 1m x 1m shrub plots were sampled the summer of 2012 under direct and diffuse light conditions. Light response curves were measured under each light condition for each plot using a Li-Cor 6400 to measure net ecosystem exchange (NEP); these measurements were modelled using a saturatingMichaelis-Menton formula.
Gaius Shaver, 2012 Plot descriptions and location data from datalogger, 1m x 1m chamber flux and point frame plots sampled near Toolik Field Station in Alaska the summer of 2012.. 10.6073/pasta/926e2979102d5d34c193582969a97bca
"2012_GS_PFandCH_GPS" contains GPS locations of all datalogger, 1m x 1m chamber flux and point frame plots sampled IVO Toolik Field Station in Alaska during the summer of 2012. The sorting variables (YEAR, DATE, SITE, GROUP, PLOT, TREAT, PLOT SIZE) are identical to those in other files with data collected that season. The main purpose of this file is for reference and as an aid in interpretation of data analyses and among-site comparisons.
Gaius Shaver, 2012 Photosynthetically Active Radiation data taken with the Delta-T SunScan wand every 15 cm of 1m x 1m chamber flux and point frame plots as well as four remotely monitored canopies at the Toolik Field Station in AK, Summer 2012.. 10.6073/pasta/d82658b4361c7bad120af2da74885ce4
Within-canopy PAR was measured with a Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. The data includes all outputs from the SunScan wand: time of measurement, spread of PAR sensors, total irradiance, total diffuse light, and individual outputs of 64-PAR sensors on the SunScan wand. These measurements were taken for 1m x 1m chamber flux (n=14) and point frame (n=19) plots as well as sites four montitored remotely by PAR sensors located above, within, and below shrub canopies.
Gaius Shaver, 2012 Harvest data including the shoot leaf area index, position in the canopy, and shoot and plant tissue area, count and mass for each shoot harvested at three levels in the canopy from 19 1m x 1m plots near LTER Shrub plots, Toolik Field Station, AK 2012.. 10.6073/pasta/11f24bddf5278229f37ea5fecf972415
Leaf and plant tissue area and mass from shoots harvested from 19 1m x 1m point frame plots near Toolik Field Station, AK during the summer of 2012. Six shoots were harvested from each plot, two from each canopy layer: upper, middle, and low. Each shoot came from a different plant, and the species selected was based on the species dominant in that canopy layer. The leaf area and mass were used to correct A/Ci and light response curves taken on each shoot [data published separately].
CSV
Subscribe to Salix glauca