Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Seasonal Inorganic Carbon And Nitrogen Transport By Phytoplankton In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 43. Canadian Journal Of Fisheries And Aquatic Sciences (1986): 1177-1186.
. “Chemical Influences On 14C And 15C Primary Production In An Arctic Lake”. Polar Biology 5. Polar Biology (1986): 211-219. doi:10.1007/BF00446089.
. “Influence Of Temperature And Light On Rates Of Inorganic Nitrogen Transport By Algae In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 41, no. 9. Canadian Journal Of Fisheries And Aquatic Sciences (1984): 1310-1318. doi:10.1139/f84-160.
. “Contrasting Responses Of Nitrogen-Fixation In Arctic Lichens To Experimental And Ambient Nitrogen And Phosphorus Availability”. Arctic, Antarctic And Alpine Research 37, no. 3. Arctic, Antarctic And Alpine Research (2005): 396-401. doi:10.1657/1523-0430%282005%29037%5B0396%3ACRONIA%5D2.0.CO%3B2.
. “Factors Affecting Ammonium Uptake In Streams – An Inter-Biome Perspective”. Freshwater Biology 48, no. 8. Freshwater Biology (2003): 1329-1352. doi:10.1046/j.1365-2427.2003.01094.x.
. “Insights Into The Complete And Partial Photooxidation Of Black Carbon In Surface Waters”. Environmental Science Process Impacts 16, no. 4. Environmental Science Process Impacts (2014): 721-731. doi:10.1039/c3em00597f.
. “Photochemical Alteration Of Organic Carbon Draining Permafrost Soils Shifts Microbial Metabolic Pathways And Stimulates Respiration”. Nature Communications 8. Nature Communications (2017): 772. doi:10.1038/s41467-017-00759-2.
. “Assessing The Prevalence, Products, And Pathways Of Dissolved Organic Matter Partial Photo-Oxidation In Arctic Surface Waters”. Environmental Science: Processes & Impacts 22. Environmental Science: Processes & Impacts (2020): 1214–1223. doi:10.1039/C9EM00504H.
. “An Inverse Ecosystem Model Of Year-To-Year Variations With First Order Approximation To The Annual Mean Fluxes”. Ecological Modelling 187, no. 4. Ecological Modelling (2005): 369-388. doi:10.1016/j.ecolmodel.2005.02.003.
. “An Inverse Ecosystem Model Of Year-To-Year Variations With First Order Approximation To The Annual Mean Fluxes.”. Ecological Modeling 187. Ecological Modeling (2005): 369–388. doi:10.1016/j.ecolmodel.2005.02.003.
. “Study Of The Inter-Annual Food Web Dynamics In The Kuparuk River With A First Order Approximation Inverse Model”. Ecological Modelling 211, no. 1-2. Ecological Modelling (2008): 97-112. doi:10.1016/j.ecolmodel.2007.08.022.
. “Terrain, Vegetation And Landscape Evolution Of The R4D Research Site, Brooks Range Foothills, Alaska”. Holarctic Ecology 12. Holarctic Ecology (1989): 238–261. http://www.jstor.org/stable/3682732.
. “Plant Community Responses To Experimental Warming Across The Tundra Biome”. Proceedings Of The National Academy Of Sciences 103, no. 5. Proceedings Of The National Academy Of Sciences (2006): 1342-1346. doi:10.1073/pnas.0503198103.
. “Hierarchical Subdivision Of Arctic Tundra Based On Vegetation Response To Climate, Parent Material And Topography”. Global Change Biology 6, no. S1. Global Change Biology (2000): 19-34. doi:10.1046/j.1365-2486.2000.06010.x.
. “The Relationship Between Productivity And Species Richness”. Annual Review Of Ecology And Systematics 30. Annual Review Of Ecology And Systematics (1999): 257-300. doi:10.1146/annurev.ecolsys.30.1.257.
. “Vegetation Responses In Alaskan Arctic Tundra After 8 Years Of A Summer Warming And Winter Snow Manipulation Experiment”. Global Change Biology 11, no. 4. Global Change Biology (2005): 537-552. doi:10.1111/j.1365-2486.2005.00927.x.
. “Growth Rings Show Limited Evidence For Ungulates’ Potential To Suppress Shrubs Across The Arcticabstract”. Environmental Research Letters. Environmental Research Letters (2022). doi:10.1088/1748-9326/ac5207.
. “Growth Rings Show Limited Evidence For Ungulates’ Potential To Suppress Shrubs Across The Arctic”. Environmental Research Letters 17. Environmental Research Letters (2022): 034013. doi:10.1088/1748-9326/ac5207.
. “Reviews And Syntheses: Effects Of Permafrost Thaw On Arctic Aquatic Ecosystems”. Biogeosciences 12, no. 23. Biogeosciences (2015): 7129 - 7167. doi:10.5194/bg-12-7129-2015.
. “Recovery Of Productivity And Species Diversity In Tussock Tundra Following Disturbance”. Arctic, Antarctic And Alpine Research 31, no. 3. Arctic, Antarctic And Alpine Research (1999): 254-258. doi:10.2307/1552254.
. “Variation In Δ15N And Δ13C Values Of Forages For Arctic Caribou: Effects Of Location, Phenology And Simulated Digestion”. Rapid Communications In Mass Spectrometry 31. Rapid Communications In Mass Spectrometry (2017): 813–820. doi:10.1002/rcm.7849.
. “Optical Instruments For Measuring Leaf Area Index In Low Vegetation: Application In Arctic Ecosystems”. Ecological Applications 15. Ecological Applications (2005): 1462-1470. doi:10.1890/03-5354.
. “Long-Term Ecosystem Level Experiments In Toolik Lake, Alaska, And Abisko, Northern Sweden: Generalizations And Differences In Ecosystem And Plant Type Responses To Global Change”. Global Change Biology 10, no. 1. Global Change Biology (2004): 105-123. doi:10.1111/j.1365-2486.2003.00719.x.
. “Tight Coupling Between Leaf Area Index And Foliage N Content In Arctic Plant Communities”. Oecologia 142, no. 3. Oecologia (2005): 421-427. doi:10.1007/s00442-004-1733-x.
. “Inter-Annual Variability Of Plant Phenology In Tussock Tundra: Modelling Interactions Of Plant Productivity, Snowmelt, And Soil Thaw”. Global Change Biology 9, no. 5. Global Change Biology (2003): 743-758. doi:10.1046/j.1365-2486.2003.00625.x.
.