Bibliography
“Functional Redundancy And Process Aggregation: Linking Ecosystems To Species”. In Linking Species And Ecosystems, 215-223. Linking Species And Ecosystems. New York, NY: Chapman and Hall, 1995.
. “Time Lags: Insights From The U.s. Long Term Ecological Research Network”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3431.
. “Ecosystem’s 80Th And The Reemergence Of Emergence”. Ecosystems 18, no. 5. Ecosystems (2015): 735 - 739. doi:10.1007/s10021-015-9893-6.
. “Model Responses To Co 2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32, no. 1. Ecological Applications (2022). doi:10.1002/eap.v32.110.1002/eap.2478.
. “Changes In C Storage By Terrestrial Ecosystems: How C-N Interactions Restrict Responses To Co2 And Temperature”. Water, Air And Soil Pollution 64, no. 1-2. Water, Air And Soil Pollution (1992): 327-344. doi:10.1007/BF00477109.
. “Using Mechanistic Models To Scale Ecological Processes Across Space And Time”. Bioscience 53, no. 1. Bioscience (2003): 68-76. doi:10.1641/0006-3568%282003%29053%5B0068%3AUMMTSE%5D2.0.CO%3B2.
. “A Model Of Multiple-Element Limitation For Acclimating Vegetation”. Ecology 73, no. 4. Ecology (1992): 1157-1174. doi:10.2307/1940666.
. “The Role Of Down-Slope Water And Nutrient Fluxes In The Response Of Arctic Hill Slopes To Climate Change”. Biogeochemistry 69, no. 1. Biogeochemistry (2004): 37-62. doi:10.1023/B:BIOG.0000031035.52498.21.
. “N And P Constrain C In Ecosystems Under Climate Change: Role Of Nutrient Redistribution, Accumulation, And Stoichiometry”. Ecological Applications 32, no. 8. Ecological Applications (2022). doi:10.1002/eap.2684.
. “Modeling Coupled Biogeochemical Cycles”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 68-73. doi:10.1890/090223.
. “An Approach To Modeling Resource Optimization For Substitutable And Interdependent Resources”. Ecological Modelling 425. Ecological Modelling (2020): 109033. doi:10.1016/j.ecolmodel.2020.109033.
. “Flux And Age Of Dissolved Organic Carbon Exported To The Arctic Ocean: A Carbon Isotopic Study Of The Five Largest Arctic Rivers”. Global Biogeochemical Cycles 21, no. 4. Global Biogeochemical Cycles (2007): GB4011. doi:10.1029/2007GB002934.
. “The Development Of The Epilithic Community In An Arctic Lake: Responses To Antibiotics And Nutrient Enrichment”. University of Cincinnati, 1991.
. “Arctic Arthropod Assemblages In Habitats Of Differing Shrub Dominance”. Ecography 36, no. 9. Ecography (2013): 994-1003. doi:10.1111/j.1600-0587.2012.00078.x.
. “Arctic Arthropod Communities In Habitats Of Differing Shrub Abundance”. Department Of Biology. Department Of Biology. University of Texas at Arlington, 2012. http://hdl.handle.net/10106/11138.
. “Phylogenetic Diversity In Freshwater‐Dwelling Isochrysidales Haptophytes With Implications For Alkenone Production”. Geobiology. Geobiology (2019). doi:10.1111/gbi.12330.
. “Foraging Behavior Of Arctic Grayling (Thymallus Arcticus) In A Tundra Stream”. University of Cincinnati, 1988.
. “Re-Evaluation Of The Taxonomy Of Daphnia Longiremis Sars, 1862 (Cladocera): Description Of A New Morph From Alaska”. Crustaceana 38, no. 1. Crustaceana (1980): 1-11. doi:10.1163/156854080X00364.
. “Maximum Summer Temperatures Predict The Temperature Adaptation Of Arctic Soil Bacterial Communities”. Biogeosciences Discussions. Biogeosciences Discussions (2022): 1–26. doi:10.5194/bg-2022-184.
. “Long-Term Ecological Research In A Human-Dominated World”. Bioscience 62, no. 4. Bioscience (2012): 342-353. doi:10.1525/bio.2012.62.4.6.
. “Drought Legacies Influence The Long-Term Carbon Balance Of A Freshwater Marsh”. Journal Of Geophysical Research: Biogeosciences 115, no. G3. Journal Of Geophysical Research: Biogeosciences (2010): 9 pp. doi:10.1029/2009JG001215.
. “Solar Position Confounds The Relationship Between Ecosystem Function And Vegetation Indices Derived From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 298-299. Agricultural And Forest Meteorology (2021): 108291. doi:10.1016/j.agrformet.2020.108291.
. “Postfire Energy Exchange In Arctic Tundra: The Importance And Climatic Implications Of Burn Severity”. Global Change Biology 17, no. 9. Global Change Biology (2011): 2831-2841. doi:10.1111/j.1365-2486.2011.02441.x.
. “Ecosystem Resilience And Climate Feedbacks In An Arctic With Fire (Invited Speaker)”. Grand Valley State University. Grand Valley State University. Allendale, MI, 2013.
. “Is Arctic Greening Consistent With The Ecology Of Tundra? Lessons From An Ecologically Informed Mass Balance Model”. Environmental Research Letters 13, no. 12. Environmental Research Letters (2018): 125007. doi:10.1088/1748-9326/aaeb50.
.