Bibliography
“Sediment Accumulation Rates In An Alaskan Arctic Lake Using A Modified $^\Textrm210$ Pb Technique”. Canadian Journal Of Fisheries And Aquatic Sciences 42. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 809–814. doi:10.1139/f85-103.
. “Sediment Accumulation Rates In An Alaskan Arctic Lake Using A Modified 210Pb Technique”. Canadian Journal Of Fisheries And Aquatic Sciences 42. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 809-814. doi:10.1139/f85-103.
. “Sediment And Nutrient Delivery From Thermokarst Features In The Foothills Of The North Slope, Alaska: Potential Impacts On Headwater Stream Ecosystems”. Journal Of Geophysical Research: Biogeosciences 113, no. G02026. Journal Of Geophysical Research: Biogeosciences (2008): 12 pp. doi:10.1029/2007jg000470.
. “Sediment Nitrification, Denitrification And Nitrous Oxide Production In A Deep Arctic Lake”. Applied And Environmental Microbiology 46. Applied And Environmental Microbiology (1983): 1084-1092. doi:10.1128/AEM.46.5.1084-1092.1983.
. “Sediment Respiration Drives Circulation And Production Of Co 2 In Ice-Covered Alaskan Arctic Lakes”. Limnology And Oceanography Letters. Limnology And Oceanography Letters (2018). doi:10.1002/lol2.10083.
. “Sediment Respiration Drives Circulation And Production Of Co $_\Textrm2$ In Ice-Covered Alaskan Arctic Lakes”. Limnology And Oceanography Letters. Limnology And Oceanography Letters (2018). doi:10.1002/lol2.10083.
. “Seedling Density And Seedling Survival In Alaskan Cotton Grass Tussock Tundra”. Holarctic Ecology 5, no. 2. Holarctic Ecology (1982): 212-217. doi:10.1111/j.1600-0587.1982.tb01039.x.
. “Seedling Dynamics Of Some Cotton Grass Tussock Tundra Species During The Natural Revegetation Of Small Disturbed Areas”. Holarctic Ecology 5, no. 2. Holarctic Ecology (1982): 207-211. doi:10.1111/j.1600-0587.1982.tb01038.x.
. “Selective Predation By Procladius In An Arctic Alaskan Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 43, no. 12. Canadian Journal Of Fisheries And Aquatic Sciences (1986): 2523-2528. doi:10.1139/f86-312.
. “Selective Predation By \Textit{Procladius In An Arctic Alaskan Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 43. Canadian Journal Of Fisheries And Aquatic Sciences (1986): 2523–2528. doi:10.1139/f86-312.
. “A Seven-Year Cycle For Two Chironomus Species In Arctic Alaskan Tundra Ponds (Diptera:chironomidae)”. Canadian Journal Of Zoology 60. Canadian Journal Of Zoology (1982): 58-70. doi:10.1139/z82-008.
. “Shallow Soils Are Warmer Under Trees And Tall Shrubs Across Arctic And Boreal Ecosystems”. Environmental Research Letters 16. Environmental Research Letters (2021): 015001. doi:10.1088/1748-9326/abc994.
. “Shifts In Abundance And Growth Of Slimy Sculpin In Response To Changes In The Predator Population In An Arctic Alaskan Lake”. Hydrobiologia 240. Hydrobiologia (1992): 219-224. doi:10.1007/BF00013463.
. “Shrub Encroachment In Arctic Tundra: Betula Nana Effects On Above- And Belowground Litter Decomposition”. Ecology 98, no. 5. Ecology (2017): 1361 - 1376. doi:10.1002/ecy.1790.
. “Shrub Encroachment In Arctic Tundra: \Textit{Betula Nana Effects On Above‐ And Belowground Litter Decomposition”. Ecology 98. Ecology (2017): 1361–1376. doi:10.1002/ecy.1790.
. “Shrub Encroachment In North American Grasslands: Shift In Growth Form Dominance Rapidly Alters Control Of Ecosystem C Inputs”. Global Change Biology 14, no. 3. Global Change Biology (2008): 615-623. doi:10.1111/j.1365-2486.2007.01512.x.
. “Shrub Encroachment In North American Grasslands: Shifts In Growth Form Dominance Rapidly Alters Control Of Ecosystem Carbon Inputs”. Global Change Biology 14. Global Change Biology (2008): 615–623. doi:10.1111/j.1365-2486.2007.01512.x.
. “Shrub Expansion In The Arctic May Induce Large‐Scale Carbon Losses Due To Changes In Plant‐Soil Interactions”. Plant And Soil 463. Plant And Soil (2021): 643–651. doi:10.1007/s11104-021-04919-8.
. “Shrub Shading Moderates The Effects Of Weather On Arthropod Activity In Arctic Tundra”. Ecological Entomology 43, no. 5. Ecological Entomology (2018): 647 - 655. doi:10.1111/een.12644.
. “A Silicon Budget For An Alaskan Arctic Lake”. Hydrobiologia 240, no. 1-3. Hydrobiologia (1992): 37-44. doi:10.1007/Bf00013450.
. “A Simple Model For Analyzing Climatic Effects On Terrestrial Carbon And Nitrogen Dynamics: An Arctic Case Study”. Global Biogeochemical Cycles 20, no. 3. Global Biogeochemical Cycles (2006): GB3016. doi:10.1029/2005GB002603.
. “Simulating Heat Transport Of Harmonic Temperature Signals In The Earth's Shallow Subsurface: Lower-Boundary Sensitivities”. Geophysical Research Letters 33, no. 14. Geophysical Research Letters (2006): L14402. doi:10.1029/2006GL026816.
. “Simulating Heat Transport Of Harmonic Temperature Signals In The Earth’s Shallow Subsurface: Lower-Boundary Sensitivities”. Geophysical Research Letters 33. Geophysical Research Letters (2006): L14402. doi:10.1029/2006GL026816.
. “Simulating The Effects Of Climate Change And Climate Variability On Carbon Dynamics In Arctic Tundra”. Global Biogeochemical Cycles 14, no. 4. Global Biogeochemical Cycles (2000): 1123-1136. doi:10.1029/1999GB001214.
. “Simulation Model Of The Planktivorous Feeding Of Arctic Grayling: Laboratory And Field Verification”. Hydrobiologia 240. Hydrobiologia (1992): 235-246. doi:10.1007/BF00013465.
.