Bibliography
“Optimal Growth Temperature Of Arctic Soil Bacterial Communities Increases Under Experimental Warming”. Global Change Biology 28. Global Change Biology (2022): 6050–6064. doi:10.1111/gcb.16342.
. “Maximum Summer Temperatures Predict The Temperature Adaptation Of Arctic Soil Bacterial Communities”. Biogeosciences Discussions. Biogeosciences Discussions (2022): 1–26. doi:10.5194/bg-2022-184.
. “Long-Term Ecological Research In A Human-Dominated World”. Bioscience 62, no. 4. Bioscience (2012): 342-353. doi:10.1525/bio.2012.62.4.6.
. “The Footprint Of Alaskan Tundra Fires During The Past Half-Century: Implications For Surface Properties And Radiative Forcing”. Environmental Research Letters 7, no. 4. Environmental Research Letters (2012): 044039. doi:10.1088/1748-9326/7/4/044039.
. “Drought Legacies Influence The Long-Term Carbon Balance Of A Freshwater Marsh”. Journal Of Geophysical Research: Biogeosciences 115, no. G3. Journal Of Geophysical Research: Biogeosciences (2010): 9 pp. doi:10.1029/2009JG001215.
. “Postfire Energy Exchange In Arctic Tundra: The Importance And Climatic Implications Of Burn Severity”. Global Change Biology 17, no. 9. Global Change Biology (2011): 2831-2841. doi:10.1111/j.1365-2486.2011.02441.x.
. “Ecosystem Resilience And Climate Feedbacks In An Arctic With Fire (Invited Speaker)”. Grand Valley State University. Grand Valley State University. Allendale, MI, 2013.
. “Burn Severity Influences Postfire Co2 Exchange In Arctic Tundra”. Ecological Applications 21, no. 2. Ecological Applications (2011): 477-89. doi:10.1890/10-0255.1.
. “Solar Position Confounds The Relationship Between Ecosystem Function And Vegetation Indices Derived From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 298-299. Agricultural And Forest Meteorology (2021): 108291. doi:10.1016/j.agrformet.2020.108291.
. “Tracking Carbon Within The Trees”. New Phytologist 197, no. 3. New Phytologist (2013): 685-686. doi:10.1111/nph.12095.
. “Is Arctic Greening Consistent With The Ecology Of Tundra? Lessons From An Ecologically Informed Mass Balance Model”. Environmental Research Letters 13, no. 12. Environmental Research Letters (2018): 125007. doi:10.1088/1748-9326/aaeb50.
. “Advantages Of A Two Band Evi Calculated From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 149, no. 9. Agricultural And Forest Meteorology (2009): 1560-1563. doi:10.1016/j.agrformet.2009.03.016.
. “The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”, 2022. doi:10.7302/5919.
. “Summer Thaw Duration Is A Strong Predictor Of The Soil Microbiome And Its Response To Permafrost Thaw In Arctic Tundra”. Environmental Microbiology 24, no. 12. Environmental Microbiology (2022): 6220 - 6237. doi:10.1111/1462-2920.16218.
. “Genomic Evidence That Microbial Carbon Degradation Is Dominated By Iron Redox Metabolism In Thawing Permafrost”. Isme Communications 3. Isme Communications (2023): 1–11. doi:10.1038/s43705-023-00326-5.
. “Rainfall Alters Permafrost Soil Redox Conditions, But Meta-Omics Show Divergent Microbial Community Responses By Tundra Type In The Arctic”. Soil Systems 5. Soil Systems (2021): 17. doi:10.3390/soilsystems5010017.
. “Structural Asymmetry And The Stability Of Diverse Food Webs”. Nature 442. Nature (2006): 265-269. doi:10.1038/nature04887.
. “Higher Predation Risk For Insect Prey At Low Latitudes And Elevations”. Science 356, no. 6339. Science (2017): 742 - 744. doi:10.1126/science.aaj1631.
. “Effects Of Climate Change On The Fresh Waters Of Arctic And Subarctic North America”. Hydrological Processes 11, no. 8. Hydrological Processes (1997): 873-902. doi:10.1002/(SICI)1099-1085(19970630)11:8%3C873::AID-HYP510%3E3.0.CO;2-6.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Above- And Belowground Responses To Long-Term Herbivore Exclusion”. Arctic, Antarctic, And Alpine Research 52. Arctic, Antarctic, And Alpine Research (2020): 109-119. doi:10.1080/15230430.2020.1733891.
. “Small But Mighty: Impacts Of Rodent-Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36. Functional Ecology (2022): 2331–2343. doi:10.1111/1365-2435.14127.
. “Recovery After World's Largest Tundra Fire Raises Questions”. Geophysical Institute, University of Alaska Fairbanks, 2011. http://www2.gi.alaska.edu/ScienceForum/ASF20/2080.html.
. .
“Change Of Microplankton Community Structure In Response To Fertilization Of An Arctic Lake”. Hydrobiologia 312, no. 3. Hydrobiologia (1995): 183-190. doi:10.1007/BF00015511.
.