Bibliography
“Improving Lake Mixing Process Simulations In The Community Land Model By Using K Profile Parameterization”. Hydrology And Earth System Sciences 23. Hydrology And Earth System Sciences (2019): 4969–4982. doi:10.5194/hess-23-4969-2019.
. “Improving Lake Mixing Process Simulations In The Community Land Model By Using K Profile Parameterization”. Hydrology And Earth System Sciences 23, no. 12. Hydrology And Earth System Sciences (2019): 4969 - 4982. doi:10.5194/hess-23-4969-2019.
. “Large Loss Of Co2 In Winter Observed Across The Northern Permafrost Region”. Nature Climate Change 9. Nature Climate Change (2019): 852–857. doi:10.1038/s41558-019-0592-8.
. “Linx I And Ii: Lessons Learned And Emerging Questions”. Frontiers In Environmental Science 7. Frontiers In Environmental Science (2019): 181. doi:10.3389/fenvs.2019.00181.
. “Long-Term Warming In Alaska Enlarges The Diazotrophic Community In Deep Soils”. Mbio 10. Mbio (2019): e02521–18. doi:10.1128/mBio.02521-18.
. “Microsite Conditions In Retrogressive Thaw Slumps May Facilitate Increased Seedling Recruitment In The Alaskan Low Arctic”. Ecology And Evolution 9. Ecology And Evolution (2019): 1880–1897. doi:10.1002/ece3.4882.
. “Ozone Depletion, Ultraviolet Radiation, Climate Change And Prospects For A Sustainable Future”. Nature Sustainability 2. Nature Sustainability (2019): 569–579. doi:10.1038/s41893-019-0314-2.
. “Phylogenetic Diversity In Freshwater‐Dwelling Isochrysidales Haptophytes With Implications For Alkenone Production”. Geobiology. Geobiology (2019). doi:10.1111/gbi.12330.
. “Quantifying Reach-Average Effects Of Hyporheic Exchange On Arctic River Temperatures In An Area Of Continuous Permafrost”. Water Resources Research 55. Water Resources Research (2019). doi:10.1029/2018WR023463.
. “Quantifying Reach‐Average Effects Of Hyporheic Exchange On Arctic River Temperatures In An Area Of Continuous Permafrost”. Water Resources Research 55. Water Resources Research (2019): 1951–1971. doi:10.1029/2018wr023463.
. “Recruitment Dynamics And Population Structure Of Willows In Tundra Disturbed By Retrogressive Thaw Slump Thermokarst On Alaska’s North Slope”. Perspectives In Plant Ecology, Evolution And Systematics 41. Perspectives In Plant Ecology, Evolution And Systematics (2019): 125494. doi:10.1016/j.ppees.2019.125494.
. “Revealing Biogeochemical Signatures Of Arctic Landscapes With River Chemistry”. Scientific Reports 9, no. 1. Scientific Reports (2019). doi:10.1038/s41598-019-49296-6.
. “Seasonal Changes In Light Availability Modify The Temperature Dependence Of Secondary Production In An Arctic Stream”. Ecology. Ecology (2019): e02690. doi:10.1002/ecy.2690.
. “Solar Uv Radiation In A Changing World: Roles Of Cryosphere–Land–Water–Atmosphere Interfaces In Global Biogeochemical Cycles”. Photochemical & Photobiological Sciences 18. Photochemical & Photobiological Sciences (2019): 747–774. doi:10.1039/c8pp90063a.
. “Solar-Induced Chlorophyll Fluorescence Exhibits A Universal Relationship With Gross Primary Productivity Across A Wide Variety Of Biomes”. Global Change Biology 25, no. 4. Global Change Biology (2019): e4 - e6. doi:10.1111/gcb.14565.
. “Solar‐Induced Chlorophyll Fluorescence Exhibits A Universal Relationship With Gross Primary Productivity Across A Wide Variety Of Biomes”. Global Change Biology 25. Global Change Biology (2019). doi:10.1111/gcb.14565.
. “Is Arctic Greening Consistent With The Ecology Of Tundra? Lessons From An Ecologically Informed Mass Balance Model”. Environmental Research Letters 13, no. 12. Environmental Research Letters (2018): 125007. doi:10.1088/1748-9326/aaeb50.
. “Belowground Community Responses To Fire: Meta-Analysis Reveals Contrasting Responses Of Soil Microorganisms And Mesofauna”. Oikos. Oikos (2018). doi:10.1111/oik.05738.
. “Biotime: A Database Of Biodiversity Time Series For The Anthropocene”. Global Ecology And Biogeography 27. Global Ecology And Biogeography (2018): 760-786. doi:10.1111/geb.12729.
. “A Changing Menu In A Changing Climate: Using Experimental And Long-Term Data To Predict Invertebrate Prey Biomass And Availability In Lakes Of Arctic Alaska”. Freshwater Biology 63. Freshwater Biology (2018): 1352-1364. doi:10.1111/fwb.13162.
. “A Changing Menu In A Changing Climate: Using Experimental And Long‐Term Data To Predict Invertebrate Prey Biomass And Availability In Lakes Of Arctic Alaska”. Freshwater Biology 63. Freshwater Biology (2018): 1352–1364. doi:10.1111/fwb.13162.
. “The Controls Of Iron And Oxygen On Hydroxyl Radical (•Oh) Production In Soils”. Soil Systems 3. Soil Systems (2018): 1. doi:10.3390/soilsystems3010001.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology 41. Polar Biology (2018): 1531–1545. doi:10.1007/s00300-017-2201-5.
. “Eavesdropping On The Arctic: Automated Bioacoustics Reveal Dynamics In Songbird Breeding Phenology”. Science Advances 4, no. 6. Science Advances (2018). doi:10.1126/sciadv.aaq1084.
. “Effect Of Continuous Light On Leaf Wax Isotope Ratios In Betula Nana And Eriophorum Vaginatum: Implications For Arctic Paleoclimate Reconstructions”. Organic Geochemistry 125. Organic Geochemistry (2018): 70 - 81. doi:10.1016/j.orggeochem.2018.08.008.
.