Changing Seasonality of Arctic Stream Systems (CSASN)
Stream networks are intimately connected to the landscapes through which they flow and significantly transform nutrients and organic matter that are in transport from landscapes to oceans. This work will quantify the relative influences of throughflow, lateral inputs, and hyporheic (a layer of surface sediments that contains water which exchanges continuously with water in the open channel) regeneration on the seasonal fluxes of C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. This objective is a logical extension of earlier. This work will focus on seasonal dynamics at different river reach scales (1st to 4th order streams) and will lay the groundwork for a whole river network model to integrate the influences of throughflow, lateral inputs, hyporheic regeneration, and in-stream metabolism on C, N, and P fluxes through an entire river network.
For more information see project's web site: Changing Seasonality and Arctic Stream Networks
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, background samples were collected from four stream channels and analyzed for a variety of nutrients.
Abstract | |
---|---|
Michael Gooseff, 2013 Peat Inlet well #1 depth in summer 2011. 10.6073/pasta/af320587de86dc41982e3d3db809ea8a |
Data on sensor depth gathered from PIn Well 1 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Peat Inlet well #2 depth in summer 2011. 10.6073/pasta/6bf2dbe830671802c5ecb3c495f1f058 |
Data on sensor depth gathered from PIn Well 2 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 I8 Inlet well #5 depth in summer 2011. 10.6073/pasta/e997565ef86b7feb70be15ee07ad0294 |
Data on sensor depth gathered from I8In Well 5 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/b4a534851f549a690ef2aff85de08d9f |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2010 season. |
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/5799d44b175ed4731ab2f95517b5e00c |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2011 season. |
Michael Gooseff, 2013 I8 Inlet well #7 depth in summer 2011. 10.6073/pasta/1085153473ea8df13451b1c0c7fe7bc5 |
Data on sensor depth gathered from I8In Well 7 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Peat Inlet well #5 depth in summer 2011. 10.6073/pasta/9155d4632738c1328954984fcdd863fe |
Data on sensor depth gathered from I8In Well 5 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/4c5b5e0ebb6979e2ac3b72462c8dc6b3 |
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2010 season. |
Michael Gooseff, 2013 Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/cbe4b564a3fa2e6108a5f5b65c2f1950 |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2011 season. |
Michael Gooseff, 2013 daily average discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/4c1790b726df3953cd58f9f15c691ee3 |
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2011 season. |
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/7718058cc9f7419cc1b84a0a3d3b9421 |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2010 season. |
Michael Gooseff, 2013 daily average discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/1732d58558e43c1f6c11fe2469989988 |
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2011 season. |
Michael Gooseff, 2013 I8 Inlet well #1 depth in summer 2011. 10.6073/pasta/3ea5e43f0da7adb5180d2db46128c3ff |
Data on sensor depth gathered from I8In Well 1 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2012. 10.6073/pasta/0d632902d48b411c7f9c92a5231b50fd |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2012 season. |
Michael Gooseff, 2013 I8 Inlet well #4 depth in summer 2011. 10.6073/pasta/b141523b2c8c9fb3bcf70252a0b0dcf9 |
Data on sensor depth gathered from I8In Well 4 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/2fa324c9b2656bae95f9a7aea25b8e25 |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2010 season. |
Michael Gooseff, 2013 I8 Inlet well #2 depth in summer 2011. 10.6073/pasta/265e39d591f41f6ec0abfcbf3404e64a |
Data on sensor depth gathered from I8In Well 2 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/bcf66401d57ed736fd610682f49460fb |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2011 season. |
Michael Gooseff, 2013 Discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/6f297c25900b6b34cb80a11e1ce3b7de |
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2010 season. |
Michael Gooseff, 2013 Peat Inlet well #4 depth in summer 2011. 10.6073/pasta/eecce1502fa9210fe081d060b9b26775 |
Data on sensor depth gathered from PIn Well 4 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 I8 Inlet well #8 depth in summer 2011. 10.6073/pasta/bf9eb0959d56cc203c97ea52946aad7a |
Data on sensor depth gathered from I8In Well 8 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 I8 Inlet well #6 depth in summer 2011. 10.6073/pasta/b21d76c698fb3143f9006863b1706c05 |
Data on sensor depth gathered from I8In Well 6 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Peat Inlet well #8 depth in summer 2011. 10.6073/pasta/4cee4ccf5d7edabd50a92fbe863536ca |
Data on sensor depth gathered from PIn Well 8 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Peat Inlet well #7 depth in summer 2011. 10.6073/pasta/a6da9e77bd4944730f3b8fc38388bec9 |
Data on sensor depth gathered from Pin Well 7 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Peat Inlet well #6 depth in summer 2011. 10.6073/pasta/11fda032461f0f112b976e1d8830fc52 |
Data on sensor depth gathered from PIn Well 6 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 Daily average discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/57e893a765dd6f809ab44f83f4ef9455 |
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2011 season. |
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2012. 10.6073/pasta/60754311f473af4d3540a0fa3d70d724 |
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2012 season. |
Michael Gooseff, 2013 discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/063253c74d2d7e2f54a8981c9b2d68a8 |
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2010 season. |
Michael Gooseff, 2013 Peat Inlet well #3 depth in summer 2011. 10.6073/pasta/f0c513552d45b605b9049df9d0ce4dda |
Data on sensor depth gathered from PIn Well 3 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
Michael Gooseff, 2013 I8 Inlet well #3 depth in summer 2011. 10.6073/pasta/51ab7dca36232d5f843393ebdcdd7c27 |
Data on sensor depth gathered from I8In Well 3 in 2011 from the CSASN-1 project. A HOBO U23 water level logger was used. This data is used to understand frost table changes throughout the season. |
William "Breck" Bowden, 2013 Substrate and cover types on the stream bottom determined by point transects for streams near the Toolik Field Station, Alaska, for 2010.. 10.6073/pasta/a3de00f9b8f9d563e8bb2fd37e362bb0 |
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. Point transects were done throughout the sampling season to determine different substrate and cover types on the stream bottom. |
William "Breck" Bowden, 2013 CSASN TASCC Nutrient additions to streams near Toolik Field Sation, Alaska 2010 to 2012. 10.6073/pasta/a4716dc93844548b60384a899a23e794 |
The Changing Seasonality of Artic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location. |
William "Breck" Bowden, 2013 CSASN Benthic Nutrients from 2010 to 2012 at I8 Inlet, I8 Outlet, Peat Inlet and Kuparuk Rivers. 10.6073/pasta/6c0c54d26b2b4e18fc3f1fb6af6b196d |
The Changing Seasonality of Arctic Stream Systems (CSASN) did extensive arctic stream research from 2010 to 2012. Specifically, the CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. Throughout the project, samples were collected from Benthic Rock Scrubs and Fine Benthic Organic Matter (FBOM). |
William "Breck" Bowden, 2013 CSASN Well and Mini-piezomenter Samples. 10.6073/pasta/3597abe9989139bccab4d0d0b51367f0 |
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, well and mini-piezometer samples were collected from various depths near stream channels and analyzed for a variety of nutrients. |
William "Breck" Bowden, 2013 CSASN Channel Nutrients from 2010 to 2012 in I8 Inlet, I8 Outlet, Peat Inlet and Kuparuk Rivers. 10.6073/pasta/d19adb5a8fe01f67806e5afccf283b52 |
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, background samples were collected from four stream channels and analyzed for a variety of nutrients. |
William "Breck" Bowden, 2013 CSASN Nutients: Tracer addition for spiraling curve characterization from 2010 to 2012. 10.6073/pasta/1a99d8b18f6311f5047665cd7c756512 |
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location. |
William "Breck" Bowden, 2013 Whole stream metabolism (I8 Inlet, I8 Outlet; Peat Inlet; Kuparuk): Changing seasonality of Arctic stream systems project. 10.6073/pasta/b2f42a2744d8526d06c522f74c273824 |
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. Whole Stream Metabolism was calculated using dissolved oxygen, discharge, stage, and temperature measured by sounds deployed in the field. |
William "Breck" Bowden, 2013 Nutrient and tracer amounts for Tracer Additions for Spiraling Curve Characterization studies on arctic streams near Toolik Field Station, Alaska 2010 -2012.. 10.6073/pasta/6b0e4feffc9bf3cc093dd668496d5d1b |
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of tracer addition for spiraling curve characterization (TASCC) and Plateau nutrient additions at each sampling location. |
Kyle Whittinghill, 2013 Three synoptic surveys of streams throughout a 48km2 watershed near Toolik Lake, AK in spring (early-June), summer (mid-July), and fall (mid-September) 2011.. 10.6073/pasta/2b27ce6b75864e21d6a8abb246abbcd2 |
To determine temporal and spatial patterns in arctic stream biogeochemistry we conducted three synoptic surveys of streams throughout a 48km2 watershed near Toolik Lake, AK in spring (early-June), summer (mid-July), and fall (mid-September) 2011. During each synoptic survey, we sampled 52 sites within a period of four days to minimize the effect of temporal hydrologic variability. At each site we measured stream temperature, pH, and conductivity and sampled water for solute analysis. |
Abstract | |
---|---|
, Changing Seasonality and Arctic Stream Networks. |