Bibliography
“Evaluating Photosynthetic Activity Across Arctic-Boreal Land Cover Types Using Solar-Induced Fluorescenceabstract”. Environmental Research Letters 17, no. 11. Environmental Research Letters (2022): 115009. doi:10.1088/1748-9326/ac9dae.
. “Growth Rings Show Limited Evidence For Ungulates’ Potential To Suppress Shrubs Across The Arcticabstract”. Environmental Research Letters. Environmental Research Letters (2022). doi:10.1088/1748-9326/ac5207.
. “Growth Rings Show Limited Evidence For Ungulates’ Potential To Suppress Shrubs Across The Arctic”. Environmental Research Letters 17. Environmental Research Letters (2022): 034013. doi:10.1088/1748-9326/ac5207.
. “Herbivores In Arctic Ecosystems: Effects Of Climate Change And Implications For Carbon And Nutrient Cycling”. Annals Of The New York Academy Of Sciences 1516, no. 1. Annals Of The New York Academy Of Sciences (2022): 28 - 47. doi:10.1111/nyas.14863.
. “Landscape Genomics Provides Evidence Of Ecotypic Adaptation And A Barrier To Gene Flow At Treeline For The Arctic Foundation Species Eriophorum Vaginatum”. Frontiers In Plant Science 13. Frontiers In Plant Science (2022). doi:10.3389/fpls.2022.860439.
. “Leaf And Root Phenology And Biomass Of Eriophorum Vaginatum In Response To Warming In The Arctic”. Journal Of Plant Ecology. Journal Of Plant Ecology (2022): rtac010. doi:10.1093/jpe/rtac010.
. “Leaf And Root Phenology And Biomass Of Eriophorum Vaginatum In Response To Warming In The Arcticabstract”. Journal Of Plant Ecology 15, no. 5. Journal Of Plant Ecology (2022): 1091 - 1105. doi:10.1093/jpe/rtac010.
. “Maximum Summer Temperatures Predict The Temperature Adaptation Of Arctic Soil Bacterial Communities”. Biogeosciences Discussions. Biogeosciences Discussions (2022): 1–26. doi:10.5194/bg-2022-184.
. “Mismatch Of N Release From The Permafrost And Vegetative Uptake Opens Pathways Of Increasing Nitrous Oxide Emissions In The High Arctic”. Global Change Biology 28, no. 20. Global Change Biology (2022): 5973 - 5990. doi:10.1111/gcb.v28.20.
. “Model Responses To Co 2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32, no. 1. Ecological Applications (2022). doi:10.1002/eap.v32.110.1002/eap.2478.
. “Model Responses To Co2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32. Ecological Applications (2022). doi:10.1002/eap.2478.
. “Multi-Year, Spatially Extensive, Watershed-Scale Synoptic Stream Chemistry And Water Quality Conditions For Six Permafrost-Underlain Arctic Watersheds”. Earth System Science Data 14, no. 1. Earth System Science Data (2022): 95 - 116. doi:10.5194/essd-14-95-2022.
. “N And P Constrain C In Ecosystems Under Climate Change: Role Of Nutrient Redistribution, Accumulation, And Stoichiometry”. Ecological Applications 32, no. 8. Ecological Applications (2022). doi:10.1002/eap.2684.
. “Optimal Growth Temperature Of Arctic Soil Bacterial Communities Increases Under Experimental Warming”. Global Change Biology 28. Global Change Biology (2022): 6050–6064. doi:10.1111/gcb.16342.
. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gains”. Environmental Research Letters 17. Environmental Research Letters (2022): 045024. doi:10.1088/1748-9326/ac6005.
. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gainsabstract”. Environmental Research Letters 17, no. 4. Environmental Research Letters (2022): 045024. doi:10.1088/1748-9326/ac6005.
. “Reimagine Fire Science For The Anthropocene”. Pnas Nexus 1. Pnas Nexus (2022): pgac115. doi:10.1093/pnasnexus/pgac115.
. “Reimagine Fire Science For The Anthropoceneabstract”. Pnas Nexus 1, no. 3. Pnas Nexus (2022). doi:10.1093/pnasnexus/pgac115.
. “Responses Of Root Phenology In Ecotypes Of Eriophorum Vaginatum To Transplantation And Warming In The Arctic”. Science Of The Total Environment 805. Science Of The Total Environment (2022): 149926. doi:10.1016/j.scitotenv.2021.149926.
. “Retrogressive Thaw Slumps In The Alaskan Low Arctic May Influence Tundra Shrub Growth More Strongly Than Climate”. Ecosphere 13. Ecosphere (2022): e4106. doi:10.1002/ecs2.4106.
. “A Review Of Open Top Chamber (Otc) Performance Across The Itex Network”. Arctic Science. Arctic Science (2022). doi:10.1139/as-2022-0030.
. “Small But Mighty: Impacts Of Rodent-Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36. Functional Ecology (2022): 2331–2343. doi:10.1111/1365-2435.14127.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Small Herbivores With Big Impacts: Tundra Voles ( Microtus Oeconomus ) Alter Post‐Fire Ecosystem Dynamics”. Ecology 103, no. 7. Ecology (2022). doi:10.1002/ecy.3689.
. “Small Herbivores With Big Impacts: Tundra Voles (Microtus Oeconomus) Alter Post-Fire Ecosystem Dynamics”. Ecology 103. Ecology (2022): e3689. doi:10.1002/ecy.3689.
.