Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Fertilization Effects On Species Density And Primary Productivity In Herbaceous Plant Communities”. Oikos 89, no. 3. Oikos (2000): 428-439. doi:10.1034/j.1600-0706.2000.890302.x.
. “Fine Root Production And Nutrient Content In Wet And Moist Arctic Tundras As Influenced By Chronic Fertilization”. Plant And Soil 242. Plant And Soil (2002): 107-113. doi:10.1023/A:1019646124768.
. “Fish Simulation Culture Model (Fis-C): A Bioenergetics Based Model For Aquacultural Wasteload Application”. Aquacultural Engineering 15, no. 4. Aquacultural Engineering (1996): 243-259. doi:10.1016/0144-8609(96)00260-9.
. “Flow Paths And Spatial Heterogeneity Of Stream Inflows In A Small Multibasin Lake”. Limnology And Oceanography 54. Limnology And Oceanography (2009): 2041–2057. doi:10.4319/lo.2009.54.6.2041.
. “Flowpath And Retention Of Snowmelt In An Ice-Covered Arctic Lake”. Limnology And Oceanography 62, no. 5. Limnology And Oceanography (2017): 2023 - 2044. doi:110.1002/lno.10549.
. “Flowpaths And Spatial Heterogeneity Of Storm-River-Water In Small Multi-Basin Lakes”. Limnology And Oceanography 54, no. 6. Limnology And Oceanography (2009): 2041-2057. doi:10.4319/lo.2009.54.6.2041.
. “Flux And Age Of Dissolved Organic Carbon Exported To The Arctic Ocean: A Carbon Isotopic Study Of The Five Largest Arctic Rivers”. Global Biogeochemical Cycles 21, no. 4. Global Biogeochemical Cycles (2007): GB4011. doi:10.1029/2007GB002934.
. “The Flux Of Co2 And Ch4 From Lakes And Rivers In Arctic Alaska”. Hydrobiologia 240. Hydrobiologia (1992): 23-36. doi:10.1007/Bf00013449.
. “Foliar And Soil Nutrients In Tundra On Glacial Landscapes Of Contrasting Ages In Northern Alaska”. Oecologia 131, no. 3. Oecologia (2002): 453-462. doi:10.1007/s00442-002-0892-x.
. “Food Web Ecology: Playing Jenga And Beyond”. Science 309, no. 5731. Science (2005): 68-71. doi:10.1126/science.1096112.
. “Food Web Structure And Function In Two Arctic Streams With Contrasting Disturbance Regimes”. Freshwater Biology 51, no. 7. Freshwater Biology (2006): 1249-1263. doi:10.1111/j.1365-2427.2006.01567.x.
. “The Footprint Of Alaskan Tundra Fires During The Past Half-Century: Implications For Surface Properties And Radiative Forcing”. Environmental Research Letters 7, no. 4. Environmental Research Letters (2012): 044039. doi:10.1088/1748-9326/7/4/044039.
. “Forest Canopy Hydraulic Properties And Catchment Water Balance: Observations And Modeling”. Ecological Modelling 154. Ecological Modelling (2002): 263-288. doi:10.1016/S0304-3800(02)00068-6.
. “A Framework For Prioritization, Design And Coordination Of Arctic Long-Term Observing Networks: A Perspective From The U.s. Search Program”. Arctic 68, no. 5. Arctic (2015): 76. doi:10.14430/arctic4450.
. “A Framework For Prioritization, Design And Coordination Of Arctic Long-Term Observing Networks: A Perspective From The U.s. Search Program”. Arctic 68. Arctic (2016): 76. doi:10.14430/arctic4450.
. “From Lilliput To Brobdingnag: Extending Models Of Mycorrhizal Function Across Scales”. Bioscience 56, no. 11. Bioscience (2006): 889-900. doi:10.1641/0006-3568%282006%2956%5B889%3AFLTBEM%5D2.0.CO%3B2.
. “Functional- And Abundance-Based Mechanisms Explain Diversity Loss Due To N Fertilization”. Proceedings Of The National Academy Of Sciences 102, no. 12. Proceedings Of The National Academy Of Sciences (2005): 4387-4392. doi:10.1073/pnas.0408648102.
. “Functional Convergence In Regulation Of Net Co2 Flux In Heterogeneous Tundra Landscapes In Alaska And Sweden”. Journal Of Ecology 95, no. 4. Journal Of Ecology (2007): 802-817. doi:10.1111/j.1365-2745.2007.01259.x.
. “The Functional Response Of Drift-Feeding Arctic Grayling: The Effects Of Prey Density, Water Velocity, And Location Efficiency”. Canadian Journal Of Fisheries And Aquatic Sciences 58, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (2001): 1957-1963. doi:10.1139/f01-138.
. “A General Biogeochemical Model Describing The Responses Of The C And N Cycles In Terrestrial Ecosystems To Changes In Co2, Climate, And N Deposition”. Tree Physiology 9, no. 1-2. Tree Physiology (1991): 101-126. doi:10.1093/treephys/9.1-2.101.
. “General Features Of The Arctic Relevant To Climate Change In Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 330-338. doi:10.1579/0044-7447%282006%2935%5B330%3AGFOTAR%5D2.0.CO%3B2.
. “Generality Of Hydrologic Transport Limitation Of Watershed Organic Carbon Flux Across Ecoregions Of The United States”. Geophysical Research Letters 45. Geophysical Research Letters (2018): 11,702 - 11,711. doi:10.1029/2018GL080005.
. “Genomic Evidence That Microbial Carbon Degradation Is Dominated By Iron Redox Metabolism In Thawing Permafrost”. Isme Communications 3. Isme Communications (2023): 1–11. doi:10.1038/s43705-023-00326-5.
. “Geochemical Influences On Solubility Of Soil Organic Carbon In Arctic Tundra Ecosystems”. Soil Science Society Of America Journal 77, no. 2. Soil Science Society Of America Journal (2013): 473-481. doi:10.2136/sssaj2012.0199.
. “Geochemistry Of Soils And Streams On Surfaces Of Varying Ages In Arctic Alaska”. Arctic, Antarctic And Alpine Research 39. Arctic, Antarctic And Alpine Research (2007): 84-98. doi:10.1657/1523-0430%282007%2939%5B84%3AGOSASO%5D2.0.CO%3B2.
.