Bibliography
“Unexpected Spatial Stability Of Water Chemistry In Headwater Stream Networks”. Ecology Letters 21. Ecology Letters (2018): 296–308. doi:10.1111/ele.12897.
. “Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12‐Yr, Low‐Level Fertilization Experiment”. Limnology And Oceanography. Limnology And Oceanography (2021): lno.11893. doi:10.1002/lno.11893.
. “Understanding How Lake Populations Of Arctic Char Are Structured And Function With Special Consideration Of The Potential Effects Of Climate Change: A Multi-Faceted Approach”. Oecologia 176, no. 1. Oecologia (2014): 81-94. doi:10.1007/s00442-014-2993-8.
. “Understanding How Lake Population Of Arctic Char Are Structured And Function With Special Consideration Of The Potential Effects Of Climate Change”. Alaska Chapter Of The American Fisheries Society. Alaska Chapter Of The American Fisheries Society. Juneau, AK, 2014.
. “Understanding Burn Severity Sensing In Arctic Tundra: Exploring Vegetation Indices, Suboptimal Assessment Timing And The Impact Of Increasing Pixel Size”. International Journal Of Remote Sensing 32, no. 2. International Journal Of Remote Sensing (2011): 7033-7056. doi:10.1080/01431161.2011.611187.
. “Uncertainties And Recommendations”. Ambio 33, no. 7. Ambio (2004): 474-479. doi:10.1579/0044-7447-33.7.474.
. “Typical Freshwater Bacteria: An Analysis Of Available 16S Rrna Gene Sequences From Plankton Of Lakes And Rivers”. Aquatic Microbial Ecology 28. Aquatic Microbial Ecology (2002): 141–155. doi:10.3354/ame028141.
. “Typical Freshwater Bacteria: An Analysis Of Available 16S Rrna Gene Sequences From Plankton Of Freshwater Lakes And Rivers”. Aquatic Microbial Ecology 28. Aquatic Microbial Ecology (2002): 141-155. doi:10.3354/ame028141.
. “Two Arctic Tundra Graminoids Differ In Tolerance To Herbivory When Grown With Added Soil Nutrients”. Botany 91, no. 2. Botany (2013): 82-90. doi:10.1139/cjb-2012-0143.
. “Turbulence In A Small Arctic Pond”. Limnology And Oceanography 63. Limnology And Oceanography (2018): 2337–2358. doi:10.1002/lno.10941.
. “Turbulence: Implications For Emissions Of Greenhouse Gases”. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Quebec City, QC, 2014.
. “Turbulence At The Air-Water Interface In Lakes Of Different Sizes: Consequences For Gas Transfer Coefficients”. American Geophysical Union Fall Meeting. American Geophysical Union Fall Meeting. San Francisco, 2014.
. “Turbulence And Ghg Emissions In Lakes Across Latitudes: Implications For Biogeochemistry (Invited Speaker)”. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Hyytiälä Field Station, Korkeakoski, Finland, 2014.
. “Tundra Wildfire Triggers Sustained Lateral Nutrient Loss In Alaskan Arctic”. Global Change Biology. Global Change Biology (2021). doi:https://doi.org/10.1111/gcb.15507.
. “Tundra Plants Compete Effectively With Soil Microbes For Amino-Acid Nitrogen”. Ecology 77. Ecology (1996): 2142–2147. doi:10.2307/2265708.
. “Tundra Fire Alters Stream Water Chemistry And Benthic Invertebrate Communities, North Slope, Alaska”. American Geophysical Union, Fall Meeting 2010. American Geophysical Union, Fall Meeting 2010. San Francisco, CA, 2010.
. “Tundra Avian Community Composition During Recovery From The Anaktuvuk River Fire”. International Journal Of Wildland Fire 27. International Journal Of Wildland Fire (2018): 69. doi:10.1071/wf17159.
. “Trophic Structure Of Apex Fish Communities In Closed Versus Leaky Lakes Of Arctic Alaska”. Oecologia 194, no. 3. Oecologia (2020): 491 - 504. doi:10.1007/s00442-020-04776-9.
. “The Trophic Significance Of Epilithic Algal Production In A Fertilized Tundra River Ecosystem”. Limnology And Oceanography 38, no. 4. Limnology And Oceanography (1993): 872-878. doi:10.4319/lo.1993.38.4.0872.
. “The Trophic Interactions Of Young-Of-The-Year Arctic Grayling, Thymallus Arcticus, In An Arctic Tundra”. University of Massachusetts, 1997.
. “The Trophic Interactions Of Young Arctic Grayling (Thymallus Arcticus) In An Arctic Tundra Stream”. Freshwater Biology 39, no. 4. Freshwater Biology (1998): 637-648. doi:10.1046/j.1365-2427.1998.00314.x.
. “Transient Storage As A Function Of Geomorphology, Discharge, And Permafrost Active Layer Conditions In Arctic Tundra Streams”. Water Resources Research 43, no. 7. Water Resources Research (2007): WR004816. doi:10.1029/2005WR004816.
. “Transformation Of A Tundra River From Heterotrophy To Autotrophy By Addition Of Phosphorus”. Science 229, no. 4720. Science (1985): 1383-1386. doi:10.1126/science.229.4720.1383.
. “Trajectory Shifts In The Arctic And Subarctic Freshwater Cycle”. Science 313, no. 5790. Science (2006): 1061-1066. doi:10.1126/science.1122593.
.