Bibliography
“Thermal Modeling Of Three Lakes Within The Continuous Permafrost Zone In Alaska Using The Lake 2.0 Model”. Geoscientific Model Development 15, no. 19. Geoscientific Model Development (2022): 7421 - 7448. doi:10.5194/gmd-15-7421-2022.
. “Tight Coupling Between Leaf Area Index And Foliage N Content In Arctic Plant Communities”. Oecologia 142, no. 3. Oecologia (2005): 421-427. doi:10.1007/s00442-004-1733-x.
. “Tiller Population Dynamics Of Reciprocally Transplanted Eriophorum Vaginatum L. Ecotypes In A Changing Climate”. Population Ecology 57, no. 1. Population Ecology (2015): 117-126. doi:10.1007/s10144-014-0459-9.
. “Time Lags: Insights From The U.s. Long Term Ecological Research Network”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3431.
. “Top-Down Is Bottom-Up: Does Predation In The Rhizosphere Regulate Aboveground Production?”. Ecology 84. Ecology (2003): 84-857. doi:10.1890/0012-9658(2003)084%5B0846:TIBDPI%5D2.0.CO;2.
. “A Tracer Investigation Of Nitrogen Cycling In A Pristine Tundra River”. Canadian Journal Of Fisheries And Aquatic Sciences 54, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (1997): 2361-2367. doi:10.1139/f97-142.
. “Tracking Carbon Within The Trees”. New Phytologist 197, no. 3. New Phytologist (2013): 685-686. doi:10.1111/nph.12095.
. “Tracking The Fate Of Fresh Carbon In The Arctic Tundra: Will Shrub Expansion Alter Responses Of Soil Organic Matter To Warming?”. Soil Biology And Biochemistry 120. Soil Biology And Biochemistry (2018): 134 - 144. doi:10.1016/j.soilbio.2018.02.002.
. “Trajectory Of The Arctic As An Integrated System”. Ecological Applications 23, no. 8. Ecological Applications (2013): 1743-1744. doi:10.1890/11-1498.1.
. “Trajectory Shifts In The Arctic And Subarctic Freshwater Cycle”. Science 313, no. 5790. Science (2006): 1061-1066. doi:10.1126/science.1122593.
. “Transformation Of A Tundra River From Heterotrophy To Autotrophy By Addition Of Phosphorus”. Science 229, no. 4720. Science (1985): 1383-1386. doi:10.1126/science.229.4720.1383.
. “Transient Storage As A Function Of Geomorphology, Discharge, And Permafrost Active Layer Conditions In Arctic Tundra Streams”. Water Resources Research 43, no. 7. Water Resources Research (2007): WR004816. doi:10.1029/2005WR004816.
. “The Trophic Interactions Of Young Arctic Grayling (Thymallus Arcticus) In An Arctic Tundra Stream”. Freshwater Biology 39, no. 4. Freshwater Biology (1998): 637-648. doi:10.1046/j.1365-2427.1998.00314.x.
. “The Trophic Significance Of Epilithic Algal Production In A Fertilized Tundra River Ecosystem”. Limnology And Oceanography 38, no. 4. Limnology And Oceanography (1993): 872-878. doi:10.4319/lo.1993.38.4.0872.
. “Trophic Structure Of Apex Fish Communities In Closed Versus Leaky Lakes Of Arctic Alaska”. Oecologia 194, no. 3. Oecologia (2020): 491 - 504. doi:10.1007/s00442-020-04776-9.
. “Tundra Wildfire Triggers Sustained Lateral Nutrient Loss In Alaskan Arctic”. Global Change Biology. Global Change Biology (2021). doi:https://doi.org/10.1111/gcb.15507.
. “Two Arctic Tundra Graminoids Differ In Tolerance To Herbivory When Grown With Added Soil Nutrients”. Botany 91, no. 2. Botany (2013): 82-90. doi:10.1139/cjb-2012-0143.
. “Typical Freshwater Bacteria: An Analysis Of Available 16S Rrna Gene Sequences From Plankton Of Freshwater Lakes And Rivers”. Aquatic Microbial Ecology 28. Aquatic Microbial Ecology (2002): 141-155. doi:10.3354/ame028141.
. “Uncertainties And Recommendations”. Ambio 33, no. 7. Ambio (2004): 474-479. doi:10.1579/0044-7447-33.7.474.
. “Understanding Burn Severity Sensing In Arctic Tundra: Exploring Vegetation Indices, Suboptimal Assessment Timing And The Impact Of Increasing Pixel Size”. International Journal Of Remote Sensing 32, no. 2. International Journal Of Remote Sensing (2011): 7033-7056. doi:10.1080/01431161.2011.611187.
. “Understanding How Lake Populations Of Arctic Char Are Structured And Function With Special Consideration Of The Potential Effects Of Climate Change: A Multi-Faceted Approach”. Oecologia 176, no. 1. Oecologia (2014): 81-94. doi:10.1007/s00442-014-2993-8.
. “Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12‐Yr, Low‐Level Fertilization Experiment”. Limnology And Oceanography. Limnology And Oceanography (2021): lno.11893. doi:10.1002/lno.11893.
. “Unexpectedly High Among-Habitat Spider (Araneae) Faunal Diversity From The Arctic Long-Term Experimental Research (Lter) Field Station At Toolik Lake, Alaska, United States Of America”. The Canadian Entomologist 145, no. Special Issue 02. The Canadian Entomologist (2013): 219-226. doi:10.4039/tce.2013.5.
. “Uniform Shrub Growth Response To June Temperature Across The North Slope Of Alaska”. Environmental Research Letters 13, no. 4. Environmental Research Letters (2018): 044013. doi:10.1088/1748-9326/aab326.
. “The U.s. Long Term Ecological Research (Lter) Program”. Bioscience 53, no. 1. Bioscience (2003): 21-32. doi:10.1641/0006-3568(2003)053%5B0021:TULTER%5D2.0.CO;2.
.