Bibliography
“Solar Uv Radiation In A Changing World: Roles Of Cryosphere–Land–Water–Atmosphere Interfaces In Global Biogeochemical Cycles”. Photochemical & Photobiological Sciences 18. Photochemical & Photobiological Sciences (2019): 747–774. doi:10.1039/c8pp90063a.
. “Solar-Induced Chlorophyll Fluorescence Exhibits A Universal Relationship With Gross Primary Productivity Across A Wide Variety Of Biomes”. Global Change Biology 25, no. 4. Global Change Biology (2019): e4 - e6. doi:10.1111/gcb.14565.
. “Above- And Belowground Responses To Long-Term Herbivore Exclusion”. Arctic, Antarctic, And Alpine Research 52. Arctic, Antarctic, And Alpine Research (2020): 109-119. doi:10.1080/15230430.2020.1733891.
. “Active Layer Freeze-Thaw And Water Storage Dynamics In Permafrost Environments Inferred From Insar”. Remote Sensing Of Environment 248. Remote Sensing Of Environment (2020): 112007. doi:10.1016/j.rse.2020.112007.
. “An Approach To Modeling Resource Optimization For Substitutable And Interdependent Resources”. Ecological Modelling 425. Ecological Modelling (2020): 109033. doi:10.1016/j.ecolmodel.2020.109033.
. “Arctic Amplification Of Global Warming Strengthened By Sunlight Oxidation Of Permafrost Carbon To Co 2”. Geophysical Research Letters 47, no. 12. Geophysical Research Letters (2020). doi:10.1029/2020GL087085.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography. Limnology And Oceanography (2020). doi:10.1002/lno.11682.
. “Assessing The Prevalence, Products, And Pathways Of Dissolved Organic Matter Partial Photo-Oxidation In Arctic Surface Waters”. Environmental Science: Processes & Impacts 22. Environmental Science: Processes & Impacts (2020): 1214–1223. doi:10.1039/C9EM00504H.
. “Aufeis Fields As Novel Groundwater‐Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography. Limnology And Oceanography (2020). doi:10.1002/lno.11626.
. “Autumn Migratory Departure Is Influenced By Reproductive Timing And Weather In An Arctic Passerine”. Journal Of Ornithology. Journal Of Ornithology (2020). doi:10.1007/s10336-020-01754-z.
. “Comparative Transcriptomics Of An Arctic Foundation Species, Tussock Cottongrass (Eriophorum Vaginatum), During An Extreme Heat Event”. Scientific Reports 10, no. 1. Scientific Reports (2020). doi:10.1038/s41598-020-65693-8.
. “Does Plant Community Plasticity Mediate Microbial Homeostasis?”. Ecology And Evolution 10, no. 12. Ecology And Evolution (2020): 5251 - 5258. doi:10.1002/ece3.v10.1210.1002/ece3.6269.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems. Ecosystems (2020). doi:10.1007/s10021-020-00542-3.
. “Effects Of Herbivory And Soil Nutriennts On Arctic Tundra Vegetation”. Towson University, 2020.
. “Effects Of Increased Temperature On Arctic Slimy Sculpin Cottus Cognatus Is Mediated By Food Availability: Implications For Climate Change”. Freshwater Biology. Freshwater Biology (2020). doi:10.1111/fwb.13659.
. “Empirical Models For Predicting Water And Heat Flow Properties Of Permafrost Soils”. Geophysical Research Letters 47, no. 11. Geophysical Research Letters (2020). doi:10.1029/2020GL087646.
. “Experimental Metatranscriptomics Reveals The Costs And Benefits Of Dissolved Organic Matter Photo‐Alteration For Freshwater Microbes”. Environmental Microbiology 22, no. 8. Environmental Microbiology (2020): 3505 - 3521. doi:10.1111/1462-2920.15121.
. “Impacts Of Female Body Size On Cannibalism And Juvenile Abundance In A Dominant Arctic Spider”. Journal Of Animal Ecology 89, no. 8. Journal Of Animal Ecology (2020): 1788 - 1798. doi:10.1111/jane.v89.810.1111/1365-2656.13230.
. “Insolation And Greenhouse Gases Drove Holocene Winter And Spring Warming In Arctic Alaska”. Quaternary Science Reviews 242. Quaternary Science Reviews (2020): 106438. doi:10.1016/j.quascirev.2020.106438.
. “Interannual, Summer, And Diel Variability Of Ch4 And Co2 Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environ. Sci.: Processes Impacts 22. Environ. Sci.: Processes Impacts (2020): 2181-2198. doi:10.1039/D0EM00125B.
. “Limited Overall Impacts Of Ectomycorrhizal Inoculation On Recruitment Of Boreal Trees Into Arctic Tundra Following Wildfire Belie Species-Specific Responses”. Plos One 15, no. 7. Plos One (2020): e0235932. doi:10.1371/journal.pone.0235932.
. “Long-Term Reliability Of The Figaro Tgs 2600 Solid-State Methane Sensor Under Low-Arctic Conditions At Toolik Lake, Alaska”. Atmospheric Measurement Techniques 13, no. 5. Atmospheric Measurement Techniques (2020): 2681 - 2695. doi:10.5194/amt-13-2681-2020.
. “A Mechanism Of Expansion: Arctic Deciduous Shrubs Capitalize On Warming-Induced Nutrient Availability”. Oecologia 192, no. 3. Oecologia (2020): 671 - 685. doi:10.1007/s00442-019-04586-8.
. “Trophic Structure Of Apex Fish Communities In Closed Versus Leaky Lakes Of Arctic Alaska”. Oecologia 194, no. 3. Oecologia (2020): 491 - 504. doi:10.1007/s00442-020-04776-9.
. “We Cannot Shrug Off The Shoulder Seasons: Addressing Knowledge And Data Gaps In An Arctic Headwater”. Environmental Research Letters 15. Environmental Research Letters (2020): 104027. doi:10.1088/1748-9326/ab9d3c.
.