Bibliography
“Potential Carbon Emissions Dominated By Carbon Dioxide From Thawed Permafrost Soils”. Nature Climate Change 6. Nature Climate Change (2016): 950–953. doi:10.1038/nclimate3054.
. “Temperature Calibration And Phylogenetically Distinct Distributions For Freshwater Alkenones: Evidence From Northern Alaskan Lakes.”. Geocosmochima Cosmochima Acta 180. Geocosmochima Cosmochima Acta (2016): 177-196. doi:10.1016/j.gca.2016.02.019.
. “Temperature Calibration And Phylogenetically Distinct Distributions For Freshwater Alkenones: Evidence From Northern Alaskan Lakes”. Geochimica Et Cosmochimica Acta 180. Geochimica Et Cosmochimica Acta (2016): 177–196. doi:10.1016/j.gca.2016.02.019.
. “Water Temperature Controls In Low Arctic Rivers: Water Temperature Controls In Low Arctic Rivers”. Water Resources Research 52. Water Resources Research (2016): 4358–4376. doi:10.1002/2015wr017965.
. “Arctic Shrub Growth Trajectories Differ Across Soil Moisture Levels”. Global Change Biology 23, no. 10. Global Change Biology (2017): 4294–4302. doi:10.1111/gcb.13677.
. “Arthropod Food Webs In Arctic Tundra: Trophic Interactions And Responses To Global Change”. Department Of Biology. Department Of Biology. University of Texas at Arlington, 2017. http://hdl.handle.net/10106/26956.
. “Asynchrony Among Local Communities Stabilises Ecosystem Function Of Metacommunities”. Ecology Letters 20, no. 12. Ecology Letters (2017): 1534 - 1545. doi:10.1111/ele.12861.
. “At The Forefront: Evidence Of The Applicability Of Using Environmental Dna To Quantify The Abundance Of Fish Populations In Natural Lentic Waters With Additional Sampling Considerations”. Canadian Journal Of Fisheries And Aquatic Sciences. Canadian Journal Of Fisheries And Aquatic Sciences (2017): 1 - 5. doi:10.1139/cjfas-2017-0114.
. “Biogenic Silica Accumulation Varies Across Tussock Tundra Plant Functional Type”. Functional Ecology 31, no. 11. Functional Ecology (2017): 2177 - 2187. doi:10.1111/1365-2435.12912.
. “Corrigendum To “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. ”. Ecology And Evolution 77, no. 11. Ecology And Evolution (2017): 4072 - 4072. doi:10.1002/ece3.3079.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology. Polar Biology (2017). doi:10.1007/s00300-017-2201-5.
. “Drivers Of Nitrogen Transfer In Stream Food Webs Across Continents”. Ecology 98, no. 12. Ecology (2017): 3044 - 3055. doi:10.1002/ecy.2009.
. “Ecosystem Responses To Climate Change At A Low Arctic And A High Arctic Long-Term Research Site”. Ambio 46, no. S1. Ambio (2017): 160 - 173. doi:10.1007/s13280-016-0870-x.
. “Ecotypic Differences In The Phenology Of The Tundra Species Eriophorum Vaginatum Reflect Sites Of Origin”. Ecology And Evolution 7, no. 22. Ecology And Evolution (2017): 9775 - 9786. doi:10.1002/ece3.3445.
. “Ecotypic Differences In The Phenology Of The Tundra Species \Textit{Eriophorum Vaginatum Reflect Sites Of Origin”. Ecology And Evolution 7. Ecology And Evolution (2017): 9775–9786. doi:10.1002/ece3.3445.
. “Evaluation Of The Viirs Brdf, Albedo And Nbar Products Suite And An Assessment Of Continuity With The Long Term Modis Record”. Remote Sensing Of Environment 201. Remote Sensing Of Environment (2017): 256–274. doi:10.1016/j.rse.2017.09.020.
. “Extreme Spring Conditions In The Arctic Delay Spring Phenology Of Long-Distance Migratory Songbirds”. Oecologia 185, no. 1. Oecologia (2017): 69 - 80. doi:10.1007/s00442-017-3907-3.
. “Flowpath And Retention Of Snowmelt In An Ice-Covered Arctic Lake”. Limnology And Oceanography 62, no. 5. Limnology And Oceanography (2017): 2023 - 2044. doi:110.1002/lno.10549.
. “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. Ecology And Evolution 7, no. 7. Ecology And Evolution (2017): 2449 - 2460. doi:10.1002/ece3.2863.
. “Higher Predation Risk For Insect Prey At Low Latitudes And Elevations”. Science 356, no. 6339. Science (2017): 742 - 744. doi:10.1126/science.aaj1631.
. “Hydrogen Isotope Fractionation In Leaf Waxes In The Alaskan Arctic Tundra”. Geochimica Et Cosmochimica Acta 213. Geochimica Et Cosmochimica Acta (2017): 216 - 236. doi:10.1016/j.gca.2017.06.028.
. “Interannual And Seasonal Patterns Of Carbon Dioxide, Water, And Energy Fluxes From Ecotonal And Thermokarst‐Impacted Ecosystems On Carbon‐Rich Permafrost Soils In Northeastern Siberia”. Journal Of Geophysical Research: Biogeosciences 122. Journal Of Geophysical Research: Biogeosciences (2017): 2651–2668. doi:10.1002/2017JG004070.
. “Long-Term Release Of Carbon Dioxide From Arctic Tundra Ecosystems In Alaska”. Ecosystems 20, no. 5. Ecosystems (2017): 960 - 974. doi:10.1007/s10021-016-0085-9.
. “Modeling Co2 Emissions From Arctic Lakes: Model Development And Site-Level Study”. Journal Of Advances In Modeling Earth Systems 9. Journal Of Advances In Modeling Earth Systems (2017). doi:10.1002/2017MS001028.
. “Modeling For Understanding V. Modeling For Numbers”. Ecosystems 20. Ecosystems (2017): 215 - 221. doi:10.1007/s10021-016-0067-y.
.